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PREFACE

This Memorandum, one of a series done by The RAND Corporation on

the Apollo Checkout Study for Headquarters, National Aeronautics and

Space Administration under Contract NASr-21(08), evolved from a study

of the terminal countdown of an Apollo space system. That study, to

be reported on separately, developed the concept that a terminal count-

down can be represented as a network; this concept in turn created a

need for a procedure for (I) analyzing networks that contained activi-

ties that had a probability of occurrence associated with them, and

(2) treating the plausibility that the time to perform an activity was

not a constant, but a random variable. Networks containing these two

elements were described by the term "stochastic networks." The result

of the research on this problem, presented in this Memorandum, is GERT

(Graphical Evaluation and Review Technique), a procedure for the analysis

of stochastic networks.

GERT can be a powerful tool for the systems analyst since it has

all the advantages associated with networks and provides an exact

evaluation of certain types of networks. GERT has wide application

possibilities, as indicated by the numerous examples given in this

Memorandum, and also has characteristics which make it useful as a

teaching mechanism.

The author of this Memorandum is a consultant to The RAND Corporation.

His primary association is with Arizona State University, where he is a

member of the faculty in the Department of Industrial Engineering.
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SUMMARY

GERT, an acronym for Graphical Evaluation and Review Technique,

is a procedure for the study of stochastic networks composed of

EXCLUSIVE-OR, INCLUSIVE-OR, and AND nodes (vertices) and multiparameter

branches (transmittances or edges). In GERT, branches of the network

are described by two or more parameters: (I) a probability that the

branch is traversed; and (2) the time (or other attribute) to traverse

the branch if it is taken. A transformation is developed that combines

these two parameters into a single parameter. For EXCLUSIVE-OR nodes,

a method is derived for the evaluation of networks in terms of the

probability of realizing an output node, and the moment generating

function of the time to realize the output node. The total concept

of stochastic networks, the transformation, and the evaluation method

has been labeled GERT.

For EXCLUSIVE-OR logic nodes, even if the times associated with

the branches are random variables, GERT still yields an exact solution.

A computer program has been written to obtain such solutions. For the

other logic nodes, conceptual and computational problems still exist.

These problems are discussed in this Memorandum and approaches and

approximations are outlined. As part of the evaluation and review

process associated with stochastic networks, a sensitivity analysis

of stochastic networks is included with GERT.

In performing the research to derive GERT, it was found that many

systems could be described in terms of stochastic networks and that

many problems could be solved using GERT. This Memorandum presents

the general concepts and fundamentals of GERT. It was decided to
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present the research in the manner in which it proceeded because the

alternative approach of presenting the transformation derived and then

showing that it is an appropriate transformation would tend to lose

the organic development which led to the theory.

Throughout the Memorandum,manyexamples demonstrate the general

applicability of GERT. However, GERTas presented is viewed as a

starting place from which manyavenues of research are possible. This

is adequately illustrated in the discussion of future research areas.

The application for which GERTwas originally developed--evaluation

and review of countdowns--will be discussed in a separate memorandum.
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I. INTRODUCTION

Networks and network analyses are playing an increasingly important

role in the description and improvement of operational systems primarily

because of the ease with which systems can be modeled in network form.

This growth in the use of networks can be attributed to: (i) the

ability to model complex systems by compounding simple systems; (2) the

mechanistic procedure for obtaining system figure-of-merits from net-

works; (3) the need for a communication mechanism to discuss the opera-

tional system in terms of its significant features; (4) a means for

specifying the data requirements for analysia of the system; and (5)

to provide a starting point for analysis and scheduling of the opera-

tional system. This last reason was the original reason for network

construction and use. The advantages that accrued outside of the

analysis procedure soon justified the network approach; however, further

efforts toward improving and extending network analysis procedures have

not kept pace with the applications of networks.

In this Memorandum a new procedure for analyzing networks with

stochastic and logical properties is developed. This procedure makes

it possible to analyze complex systems and problems in a less inductive

manner and hence should stimulate efforts in the network analysis area.

Although the research reported solves just one problem among many in

the network field, it provides a breakthrough which should simplify the

development of analysis procedures for more complex type networks. The

name given to the technique developed is GERT, Graphical Evaluation and

Review Technique.

GERT is a technique for the analysis of a class of networks which
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have the following characteristics: (I) a probability that a branch

of the network is indeed part of a realization of the network; and

(2) an elapsed time or time interval associated with the branch if

the branch is part of the realization of the network. Such networks

will be referred to as stochastic networks and consist of a set of

branches and nodes. A realization of a network is a particular set

of branches and nodes which describe the network for one experiment.

If the time associated with a branch is a randomvariable, then a

realization also implies that a fixed time has been selected for each

branch. GERTwill derive both the probability that a node is realized

and the conditional momentgenerating function (M.G.F.) of the elapsed

time required to traverse between any two nodes.

A note of caution is necessary at this point to forewarn the reader

about terminology. Since GERTdeals with a composite-type graph, there

will be someterminology that differs from the standard network and the

standard signal flowgraph terminologies which already differ. Two

illustrations of the terminology differences are:

i. The term branch is used throughout to indicate an
activity between two nodes (milestones). In GERT
a branch always has a direction. In signal flow-
graphs the word transmittance is used in this
connection. The value of the transmittance is a
parameter of the system. In GERT a branch can have

multiple values associated with it, some of which

can be random variables. The use of the statistical

term "random variable" to describe a quantity associ-

ated with a branch is called to the attention of the

reader.

In this report, time is used in the generic sense to represent

a variable that is additive in the sense to be described below. As

an extension, variables that are multiplicative will be considered

in Appendix C.
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2. In GERT, there are probabilities associated with each

branch. These probabilities represent the relative

frequency* that the branch is part of the network. When

the branch is part of the network it is said that the

branch is realized. Since branches lead to nodes, the

concept of realization also pertains to nodes.

The above two illustrations are cited in the hope that the reader

will recognize the difference inherent in GERT and adapt to its term-

inology.

Section II presents the components of stochastic networks, along

with an example to illustrate the integration of the components into

a network. Then the steps in GERT are discussed and the analysis

problems inherent in GERT presented. At the end of this section, past

research related to GERT is outlined.

Section III sets forth the derivation of the equivalent network

(a multibranched network reduced to a one-branch network) for three

basic networks: series; parallel; and self-loop, and makes a generali-

zation of the derivation procedure based on flowgraph theory. In the

next three sections, the procedures discussed in Sec. III are illus-

trated and applied.

Concepts of confidence statements, sensitivity, and elasticity

are presented in Sec. VII. In Sec. VIII, a summary list of areas for

future research is given.

Appendix A presents a digital computer program for analyzing

specific GERT networks. Appendix B discusses in greater detail the

AND and INCLUSIVE-OR nodes. While the development of GERT in the text

The use of subjective probabilities associated with a branch is

similar to the use of subjective probabilities in other areas and the

same rules apply to their use in GERT.
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of this Memorandumwas restricted to additive parameters, Appendix C

rounds out the exposition by discussing stochastic networks with

multiplicative parameters.
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II. COMPONENTS OF STOCHASTIC NETWORKS

The components of stochastic networks are directed branches (arcs,

edges, transmittances) and logical nodes (vertices). A directed branch

has associated with it one node from which it emanates and one node at

which it terminates. Two parameters are associated with a branch:

(i) the probability that a branch is taken, Pa' given that the node

from which it emanated is realized; and (2) a time, t , required, if
a

the branch is taken, to accomplish the activity which the branch

represents, t can be a random variable. If the branch is not part
a

of the realization of the network then the time for the activity repre-

sented by the branch is zero. The visual representation of a directed

branch, without the nodes represented, is:

(Pa;ta)

A node in a stochastic network consists of an input (receiving,

contributive) side and an output (emitting, distributive) side. In

this Memorandum three logical relations on the input side and two types

of relations on the output side will be considered. The three logi-

cal relations on the input side are:

Generalization to permit more than one additive parameter pre-

sents no conceptual difficulty as long as the parameters are indepen-

dent (see Example 12, p. 62).

In Appendix B, two other logical nodes, a minimum node and an

inverter node, are proposed.
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Name S_.ymbol

EXCLUSIVE-OR

INCLUSIVE-OR

AND

Characteristic

The realization of any branch leading
into the node causes the node to be

realized; however, one and only one of

the branches leading into this node can

be realized at a given time.

The realization of any branch leading
into the node causes the node to be

realized. The time of realization is

the smallest of the completion times of

the activities leading into the INCLUSIVE-
OR node.

The node will be realized only if all the

branches leading into the node are realized.

The time of realization thus is the largest

of the completion times of the activities

leading into the AND node.

On the output side, the two relations are defined as:

Name

DETERMINISTIC D

PROBABILISTIC >

Characteristic

All branches emanating from the node are

taken if the node is realized, i.e., all

branches emanating from this node have a

p-parameter equal to i.

Exactly one branch emanating from the node

is taken if the node is realized.

For notational convenience, the input and output symbols are combined

below to show that there are six possible types of nodes:

Before proceeding to the mathematical analysis of these different

node types, an example of the use of stochastic networks in modeling

is given to assist in understanding stochastic networks. The example

is for illustrative purposes only, and no analysis will be performed

on the derived networks.
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EXAMPLE OF MODELING USING STOCHASTIC NETWORKS

Consider a space mission involving the rendezvous of two vehicles.

In order for the mission to have a chance for success, both vehicles

must be successfully launched. The stochastic network for this problem

is:

Vehicle 1

Vehicle 2

Successful Launch --_

onsu

For the node S to be realized, both branches leading into it must be

realized (a characteristic of the AND node). Node F will be realized

if either branch incident to it is realized (INCLUSIVE-OR node).

Obviously the above model is simple, but it does illustrate the model-

ing and communication aspects of stochastic networks. To extend the

model somewhat, assume that if both vehicles are successfully launched,

at least one of the vehicles must be capable of maneuvering for the

mission to be a success. The network for this situation is:
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Unsuccessful Launch

Vehicle 1

Launch

Successful
Launch

Vehicle 2

Successful Maneuverability

Both Vehicles
Successfully

Launched

1

_ission

Maneuvering Success
Failure

Maneuverabilit_

Unsuccessful

Launch

Mission

Failure

In this case nodes 1 and 2 are added to specify the event both vehicles

successfully launched. The S node now will be realized if either branch

incident to it is realized since the assumption was that a maneuverabil-

ity capability was necessary only for one vehicle to obtain mission

Success.

The above networks represent highly aggregated models of complex

operations. One of the beauties of stochastic networks is its useful-

ness at many levels within a problem area. For example, the branch

"successful launch" can be divided into many branches and nodes. The

following illustrates this concept:
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Successful Launch

Checkout of
Subsystems

Terminal

Base
Facilities

Unsuccessful
Orbit

Orbit Successful Flight
Phase

\
/ \ Flight

_ PhaseFailure
Orbit \

Correction\

\ --.-._

N

Boost Phase

Failure

In this network it is seen that the AND node plays a predominant role

in the activities up to and including the terminal countdown. This is

due to the fact that all activities must be performed prior to lift-off.

This, of course, is a simplified view of the system; however, it serves

the purpose of illustrating that part of a stochastic network can be a

PERT-type network. After the terminal countdown, either-or possibil-

ities are presented and the probabilistic output node is shown. The

event represented by the node labeled "successful orbit" is an

EXCLUSIVE-OR node since a successful orbit can occur in two mutually

exclusive ways: (i) proper operation during boost phase, and (2)

unsuccessful orbit after boost phase with orbit correction achieved.

The dotted lines represent activities that do not contribute to the

"successful launch" but are branches associated with the system modeled.
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In this case they would lead to the node "unsuccessful launch" which is

an INCLUSIVE-ORnode because any of the branches leading into the node

can be realized and any of them causes the node to be realized.

Continuing the example, consider the branch "terminal countdown,"

a segmentof which can be represented as below:

_Terminal Countdown

aratory
- • _- i _, Actions _,_v_

/ -,, _ ¼
__..____ _ _ _ t,_ _ _ co_ _,
_ --_ -- _._ -- __ Countdown 1

_ _Return to Start/

The network shows three preparatory actions to a test, such as power-on,

stimuli calibrated, and recorder-on, which are required before the test

can begin. The test is performed and, based on the results of the test,

the countdown is continued, diagnosis is initiated, or the test is per-

formed over. This last action illustrates the concept of feedback in a

stochastic network.

Obviously the above are not complete descriptions, but they

illustrate the communication capabilities of GERT. Also, by decompos-

ing the problem into segments, the parameters of interest for an aggre-

gate model can be computed. Thus the probability of a successful launch

could be computed by evaluation of the more detailed networks.
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STEPS IN APPLYING GERT

The foregoing material described the qualitative aspects of GERT.

Basically, the steps employed in applying GERT are:

i. Convert a qualitative description of a system or problem

to a model in network form;

2. Collect the necessary data to describe the branches of

the network;

3. Obtain an equivalent one-branch function between two nodes

of the network;

4. Convert the equivalent function into the following two

performance measures of the network:

a. The probability that a specific node is realized; and

b. The M.G.F. of the time associated with an equivalent

network;

5. Make inferences concerning the system under study from the

information obtained in 4 above.

In this expository Memorandum emphasis will be directed toward items 3

and 4. Discussion of item I will be given through examples. For items

2 and 5, the methods employed in PERT and flowgraph theory are equally

applicable for GERT.

BASIC NETWORK ANALYSIS

The basic algebra associated with the previously defined nodes is

set forth below. Although analyzing networks through the development

of a technique that includes all six types of nodes appears formidable,

there are several saving facts.

First, all six nodes behave in the same manner if only one branch

is received at the input side and one branch is emitted on the output

side. Thus, if only two branches are under consideration and they are

in series, the node type has no effect on the equivalent one-branch
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network. An equivalent network is defined as a reduction of a multi-

branched network into a one-branch network, where the parameters of

the one-branch network are derived from the parameters of the branches

of the multibranched network.

Second, the concept of feedback is only appropriate for the

EXCLUSIVE-ORinput type of node. This results from the fact that

feedback requires that the node being returned to be realized prior

to the feedback. But the node cannot be realized if it is an ANDtype

node unless all inputs have been realized. For the INCLUSIVE-ORinput

type, only the branch representing the first activity completed is

significant. All other branches are ignored in computing the time the

INCLUSIVE-ORnode is realized. Since a fedback branch will always be

completed after a non-feedback branch, the EXCLUSIVE-ORrepresentation

can replace the INCLUSIVE-ORnode if a feedback branch is incident to

the node.

Third, if all the nodes have the EXCLUSIVE-ORinput character-

istics, then either all node outputs are of the probabilistic type,

or the paths (collections of branches) following a deterministic out-

put are independent (nontouching, disjoint). If this were not the case

then at someinput side of a node there would be a possibility of two

branches being realized simultaneously, which contradicts the condition

that all nodes of the network have the EXCLUSIVE-ORinput relation.

Fourth, for somenetworks ANDand INCLUSIVE-ORinput types can

be converted to the EXCLUSIVE-ORrelationship. To illustrate this,

each of these relationships is discussed in a quantitative fashion

below. For the EXCLUSIVE-ORrelation we have



-13-

_;t a)

(Pb; tb_)

P3 = PlPa + P2Pb

and _3 = PlPa(TI + ta) + P2Pb(T2 + tb)
PlPa + P2Pb

m

where P. is the probability that node i is realized and T is the
i ' i

expected time that node i is realized, given that it is realized. For

this introductory discussion, only the expected time for a node to be

realized, given it is realized, will be calculated. (Note that even

though ta and tb may be constants, the time to realize node 3, T3, is

a random variable.) The derivation of P3 and _3 is by enumeration of

the possible events that result in the realization of node 3. Node 3

can be realized if either branch a or branch b is realized. The proba-

bility that branch a will be realized is the probability that node 1 is

realized, PI' times the probability that branch a is realized given

node 1 is realized, which is Pa" A similar discussion holds for branch

b and the equation for P3 results. Note by definition of the EXCLUSIVE-

OR relation, branches a and b cannot both occur. If this were a possi-

bility, then node 3 would have to be an INCLUSIVE-OR node. The expected

time to realize node 3, given it is realized, is the weighted sum of

the possible times to realize node 3.

If node 1 were the same as node 2, then P1 = P2 and _i = _2' and

the following equations result:

P3 = PI(Pa + Pb )
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and

_3 = TI +
Pata + Pbtb

Pa + Pb

and the network could be drawn as

u

where PE = Pa + Pb and _E = Pata + pbtb
Pa + Pb

Consider next the AND logic relation as depicted below:

(i - Pa;tc)

;td)

Node 3 will only be realized if both a and b are realized. The proba-

bility that a is realized is Plp a and the probability that b is realized

is P2p b. The probability that both are realized is the intersection of

plp a and P2p b. In this case the intersection of the events associated

with nodes i and 2, denoted by PIN2' is equal to PI' and assuming PaNb

is paPb , we have P3 = PlPaPb" Since both branches must be realized, we
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have

T3 = max (TI + ta; T2 + tb) .

Care must be taken here in the computation of expected values since

the expected value of a maximumis not usually the maximumof the

expected values. This will be discussed in Appendix B. For this case

TI = T2 = TS, and we have T3 = Ts + max(ta;tb) . Thus PE = PaPband

tE = max (ta;tb) , and the equivalent network would be

(i - Pa;tc)

(PE;tE)

(I - Pb;td)

The EXCLUSIVE-ORrelation can replace the ANDrelation at node 3 since

only one branch is received at node 3.

For the INCLUSIVE-ORrelation, the analysis proceeds as in the

ANDcase. The branches of the network given below
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b;td)

are equivalent to

(I - Pa;tc)

(i,0)__ T _ anb;ta]

O i p
"_,0)

(1 Pb,td) __

The reduction process involves the enumeration of all mutually exclusive

alternative methods of realizing node 3 from node S.

Description

Branch a but not branch b

Branch b but not branch a

Branch a and branch b

Probability

These are:

E_uivalent time

Pa " Panb ta

Pb - Panb tb

P_b rain (t a;tb)
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These examples demonstrate the complexity of converting input relations

for simple networks. However, the EXCLUSIVE-ORrelationship appears

basic.

SCOPE OF THIS MEMORANDUM

GERT is a procedure for studying stochastic networks. It provides

a framework on which future research on stochastic networks can be per-

formed. The main body of this Memorandum is devoted to the analysis

and application of stochastic networks consistingonly of EXCLUSIVE-OR

nodes. This has been selected as the starting place for two reasons:

(I) the EXCLUSIVE-OR node represents a linear type operator and, hence,

is the easiest node type to analyze; and (2) the EXCLUSIVE-OR node is a

fundamental element of stochastic networks, as discussed in the previous

subsection.

The research reported herein will provide insights into the analyses

of other logical nodes. The AND node is discussed at length in Appendix

B so as to foster further research in that area. In fact, throughout

this Memorandum areas within GERT requiring further research are indi-

cated. Thus the scope of GERT is broad. The scope of this Memorandum,

however, is limited to the presentation of two basic tools: (i) a frame-

work for the study of stochastic networks; and (2) an exact procedure for

analyzing networks with only EXCLUSIVE-OR nodes (along with a computer

program for performing the necessary calculations).

RELATED RESEARCH

Research related to GERT has been concerned with project-scheduling-

type networks (PERT, CPMvariety) and signal flowgraphs. For PERT-type
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networks, all branches must be taken; hence, a realization of the network

is the entire network. A time (or distribution of times) is associated

with each branch of the PERTnetwork. An analysis is performed to deter-

mine the distribution of the total project time. This analysis requires

rather severe assumptions, and only an approximation to the distribution

of the total project time is obtained. (I'4)

Eisner (5) suggested the use of logical elements in the PERT-type

networks, and Elmaghraby(6) developed a notation for a multiparameter

branch network and the logical elements previously presented. Elmaghraby

also developed an algebra and coined the phrase "generalized activity

networks" to describe such networks. Elmaghraby's algebra is limited

to branches that have constant times associated with them.

The research in the area of flowgraphs has been extensive. Two

surveys of the techniques by Lorens(7) and Happ(8) give a total of

over 200 references. A topological presentation is given by Kim and

Chien. (9)

A flowgraph consists of transmittances (directed branches) and

nodes. For the usual flowgraph, a realization of the graph must contain

all the transmittances of the graph. Huggins(I0) and Howard(II'12) have

employed flowgraphs to represent and analyze probabilistic systems.

A basic property of flowgraphs is the law of nodes, i.e., the value

of a variable associated with a node of the graph is equal to the sum

of the values associated with transmittances terminating at that node

times the value of the node from whence the transmittance originated.

Two examplesof this law are:
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Xl _ X3

X2
X3 = aXI + bX2

The rule for constructing the equations is to subtract from the node

value the sumof the product of the transmittances entering the nodes

times the value of the node from whencethe transmittance originated.

and

wA y_g A X4 = hX2 + jX4 + iX3XI

X2__-_h_ X4 _ JX4 = h(gXl) + iX3

hgXl + iX3X4 X4 i -- j "
X3

With this property it can be shownthat a flowgraph is a conven-

ient graphical representation of a set of independent simultaneous

linear equations. Thus for the above flowgraph there is an equation

for each node excluding the inputs nodes, viz.._._.,

- gXI + X2 = 0

- hX2 - iX3 + X4 - jX4 = 0
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III. STOCHASTIC NETWORKS WITH EXCLUSIVE-OR NODES

In this section the equivalent network will be derived for the

following three basic networks: (i) series; (2) parallel; and (3) self-

loop. The derivation will be accomplished by enumerating all possible

paths from the starting node (source) of the network to the terminal

node (sink) of the network. A generalization of the derivation pro-

cedure based on flowgraph theory will then be made. The generalization

permits the analysis of networks where branches represent activities

having durations described by random variables. To simplify the termi-

nology, a node will be described by its input relationships, where no

ambiguity is thought to be present.

Figure I illustrates the equivalent one-branch network for a series,

a parallel, and a self-loop network, all of whose branches have constant

time parameters and whose nodes are of the EXCLUSIVE-OR type.

Network Representation with Equivalent Equivalent

type constant times probability expected time

(a) Series paPb ta + tb

_(Pa;ta) _

\ \
\ \

(b) Parallel (Pa;ta) Pa + Pb

(c) Self-loop

\

Pata + Pbtb

Pa + Pb

Fig. 1--Equivalence calculations of basic networks

(Pb;tb) Pa ( Pb b)

_ t + tb

(Pa;ta) 1 - Pb a 1 - p

\\(Pc;tc )
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Since for a series network both branches must be taken to reach

node 3, the probability of taking both branches is the product of the

individual probabilities and the time is the sumof the individual

times. For the parallel branches, either branch can be part of the

realization but not both (by definition of the "EXCLUSIVE-OR"element).

Thus the probability of going from node I to node 2 is the sumof the

probabilities. The time to traverse from node i to node 2 is no longer

a constant but takes on the value t with probability Pa' and tb witha

probability Pb" Thus the equivalent time to realize node 2, given that

it is realized, is a randomvariable. Normalizing Pa and Pb by dividing

each by (Pa + Pb) to ensure that the complete density function for the

equivalent time is accounted for, wehave the equivalent expected time,

as shownin part (b) of Fig. I. It should be clear that a complete

description of the time to realize node 2 has not been obtained, and

the use of the expected value to describe the time parameter is an

approximation.

Reduction of the self-loop to an equivalent probability and an

equivalent expected time is obtained by summationof the probabilities

and probable times of all possible paths from node i to node 2. The

probability of going from I to 2 with no transitions around the self-

loop is Pa; with one transition around the self-loop is paPb; with n
n Pa

= . Similarly
transitions it is paPb . Summingyields PE i - Pb

n i_______1PaPb PbE{t} = [nt b + t ] = t + tb ,a pa/(l - pb) a - Pb
n=o

where the normalizing factor is pa/(l - pb ). Note that the parameters of

the c-branch must also be altered by the same factors if the self-loop
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is removedfrom the network. Again the expected time does not com-

pletely describe the network.

Fromthe analysis of the basic networks presented above, it is

seen that for two branches in series the probabilities associated with

the branches are multiplied to obtain the equivalent probability for

the two branches. For parallel branches, the probabilities add. These

rules adhere to the basic law of nodes presented previously for flow-

graphs, i.e., the probability associated with a node can be computed

as the sumof the probabilities of each incoming branch times the

probability of the node from which the branch emanated. Thus if time

was not associated with the network, the network analysis could be

accomplished using flowgraph theory. Alternatively, by setting all times

on a stochastic network to zero and allowing the other parameter

(probability) to assumea wider range of values reduces a stochastic

network to a flowgraph.

It is now possible to state the relationship betweenPERT-type

networks and flowgraphs and stochastic networks:

i. PERT-typenetworks are stochastic (GERT-type) networks
with all AND-deterministic nodes.

2. Flowgraphs are stochastic networks with a single multi-
plicative parameter (all additive parameters such as
time are set to zero). The probabilistic interpreta-
tion for the multiplicative parameter is removed.

Returning to the discussion of the reduction of the basic networks,

it is seen that the time parameter is added for two branches in series

and is a weighted average for two branches in parallel. These observa-

tions suggest the transformation of p and t into a single function,
st

w(s) = pe . Then for two branches in series, the w-function of the



-23-

branches will be multiplied, e.g., WE(S) = Wl(S) w2(s) and for two

branches in parallel the w-functions of the branches will be added,

e.g., WE(S) = Wl(S) + w2(s). Differentiating with respect to s and

then setting s = 0 yields a result proportional to the expected times.

In the next two subsections the technique for using this transformation

within GERTfor analyzing stochastic networks is presented in detail.

NETWORK ANALYSIS EMPLOYING A TOPOLOGICAL EQUATION

In the preceding paragraph, the w-function was suggested as a

transformation device. There are two reasons for this transformation:

i. the parameters of the stochastic network are combined

in the desired fashion; and

2. the w-function obeys the law of nodes of flowgraph

theory and, hence, the topological equation of flow-

graph theory can be employed to analyze stochastic

networks.

The method for obtaining the desired information from the equiva-

lent w-function will now be discussed. Since the time parameter does

not affect the equivalent probability, the equivalent probability can

be obtained by setting the dummy variable s equal to zero. Thus

PE = WE(0) " (i)

For two branches in series, WE(S ) = Wl(S)W2(S) = (PleStl)(P2est2)

and hence, PE = WE(O) = PlP2 ' as desired. For two branches in parallel,

Stl + P2est2 and PE WE(O) = Pl + P2 asWE(S) = Wl(S) + w2(s) = pi e = ,

desired. For the equivalent time, it is seen that by differentiation

of WE(S) with respect to s and then setting s = 0, an expression pro-

portional to the expected time results, viz._____.,for two branches in

_WE(S)
series _s I s--O = PlP2(tl + t2) and for two branches in parallel
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_WE(s)

!s=0 = Pltl + P2t2 " For both of these expressions the division_s

by PE will yield the desired results for the equivalent expected time.

The need for this division is due to the fact that the equivalent time

is a conditional variable, i.e., conditioned on the branch being

realized. From the above, it is seen that

th
moment about zero of the equivalentwhere _nE is defined as the n

branch.

Further exploration shows that

_n [WE(S ) ]_nE =
_s n .WE(O) s=0

WE(S) ,

and, hence, WE(0 ) = ME(s ) is the M.G.F. of the equivalent time, tE.
th

It is convenient at this time to define the n cumulant, KnE (for

n < 3 the cumulants yield the moments about the mean directly), which

is given by

KnE _n= -- [£n ME(S)] •
_s n s=O

(2)

(3)

Thus, the second moment about the mean, the variance, can be obtained

directly as K2E. Equations i, 2, and 3 hold for all branches with the

subscript E replaced by the subscript of the branch under consideration.

The w-function was developed based only on the series and parallel

basic networks. However, it can be shown that any network is a combina-

Due to the definition of the time parameter, tE is the equivalent

time, given that the equivalent network is realized. Thus ME(S ) is the
M.G.F. of the conditioned equivalent time parameter.
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tion of series and parallel equivalent networks. The self-loop is a

good example. It consists (as is illustrated below) of an infinite

number of equivalent branches in parallel with each branch having a

probability associated with it of paPbj and a time of t + ° viz.,a Jtb' --

(Pb;tb) (Pa;ta)

.th
For the 3 branch, there are j branches equivalent to the feedback

branch b in series with the forward branch a. This example illustrates

the point that if the w-function holds for both the series and parallel

networks, it will hold for a network of arbitrary complexity.

In order to employ w-functions effectively, it is necessary to

derive a procedure for obtaining WE(S)from knowledge of the w.(s)J
functions for the individual branches j. A systematic approach to the

evaluation of systems of arbitrary complexity is provided by the topo-

logical equation of signal flowgraph theory. The topological equation

holds for independent linear systems of equations and it specifies

the value of the determinant of the matrix of coefficients of the

equations. The transformation of p and t into the w-function combines

the variables of interest into a linear form. This is seen from the

correspondence between the law of nodes and a set of linear equations

discussed on p. 19. Thus the w-function satisfies the conditions

necessary for its use in the topological equation.
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The topological equation describes the relationship between

branches w°(s) for any network. The topological equation (13) is
J

H(s) = I + _ (-l)mLi(m) , (4)
m i

where Li(m) is the loop product of m disjoint (nontouching) loops

(m = i, 2, 3, ..., is called the order of the loop) and the summation

is overall combinations of the m disjoint loops. A loop is defined as

a sequenceof branches such that every node is commonto two and only

two branches of the loop, one terminating at the node and the other

emanating from that node. In a first-order loop every node can be

reached from every other node. A loop of order n is a set of n dis-

joint first-order loops. Disjoint loops are loops which have no nodes

in common. The parameter of a loop is the product of the parameters

of the branches of the loop.

Before proceeding with the use of the topological equation, an

example of the concept of a loop will be given. Consider the network

shownbelow (suppressing the s for convenience):

w4

i

By the definition given of a loop, it is seen there are three loops of

order i: LI(I ) = WlW2;L2(I ) = w3w4; and L3(I ) = w5w6. The reason

these are loops is that the nodes of the loop are such that each branch

of the loop enters and leaves only one node of the loop. The w-function
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of the loop is the product of the w-functions of the branches of the

loop (as if the branches were in series). Nowloops LI(1) and L3(I )

do not have a node in common,therefore they are disjoint (nontouching)

and are combinedto form a loop of order 2, i.e.,

LI(2 ) = LI(1)L3(I ) = WlW2W5W6 •

Another concept of importance in flowgraph theory is that of the

forward path. Given two nodes, a forward path is a sequence of branches

from one node to the other such that every node except the two specified

is commonto two and only two branches of the forward path. The differ-

ence between a forward path and a loop is that the start node has no

input branch and the terminal node has no output branch. For the above

network, if node I is defined as the start node and node 5 as the

terminal node, then there is only one forward path, which is WlW3W5W7.

The node 0 is included in the network to comply with the definition of

a forward path. This node will only be addedwhen clarification of the

forward path is required. With these definitions, we are in a position

to apply the topological equation.

In a closed network (a network consisting only of loops), there

are no input nodes, and the set of independent linear equations

describing the variables of the network are homogeneous. Hence the

determinant of the matrix of coefficients is zero and the topological

equation for a closed network is (13)

H(s) = 0 for all s. (5)

To apply Eq. 5, the network must be closed. If an equivalent w-function

is desired between two nodes, then all nodes--excepting the two under

consideration--which have no input branches or output branches can be
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omitted along with all branches incident to such nodes during the

calculation of the particular w-function (the converse of superposition).

This process is performed iteratively until there are no nodes other

than the two under consideration which have no input branches or output

branches. Now the network can be closed by adding a branch from the

terminal node to the start node. This, by the definition of forward

paths, will convert all forward paths between the two nodes to loops

involving the two nodes. In this manner a network is closed by the

addition of one branch. Examplesof this process are given below.

Consider a network of arbitrary complexity and depict it by a

black box as shown. Close the network by the addition of the required

one branch,

= WE(S)

WA(S)
q

By definition, the equivalent one-branch network from Q to T is WE(S ) .

For this network there is only one loop, namely WE(S)WA(S), and the

topological equation yields

and, hence,

H(s) = 1 - WE(S)WA(S)= 0

i

WA(S) WE(S ) . (6)
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This is a general result and the branch that is added to close a net-

work is the inverse of the equivalent branch of the network.

Consider the more complex network discussed previously:

w 4

I w3 w7

w 2 w 6

wA

where wA has been added. For this network there are now four loops of

order i, namely, LI(I ) = WlW2; L2(I ) = w3w4, L3(I ) = w5w6; and L4(I ) =

WlW3W5WAW7; and one loop of order 2, LI(2 ) = WlW2W5W 6. From the topo-

logical equation, we have

H = I - WlW 2 - w3w 4 - w5w 6 - WlW3W5WAW 7 + WlW2W5W 6 = 0 .

Solving for wE = i/w A yields

wE =

WlW3W5W 7

i - WlW 2 - w3w 4 - w5w 6 + WlW2W5W 6

Since WA(S) or equivalently WE(S ) is the quantity of interest, it is

convenient to have an expression from which WE(S) can be computed

directly. The equatien for H(s) is a linear form, i.e., the exponents

of the wi(s) in each term will be either 0 or I, and H(s) can be

written as a function of the terms not containing wA and those terms
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which do contain WA:

H(s)= H(s)I
WA=0

and

WE(S) =

_H(s) = 0
+WA _wA

WA(S)

__H__
_A

H(s)I
wA=O

(7)

For the above example, we have

H(s) I
w=O

a

= i - WlW 2 - w3w 4 - w5w 6 + WlW2W5W 6

and _H(s) = - WlW3W5W7 ,
_wA

and the equation for wE results.

Careful examination of the above equation and example shows that

_H(s) consists of each forward path between the nodes for which the

_wA
equivalence is desired times one plus the loops disjoint from the for-

ward path multiplied by (-I) raised to the order of the loop. H(S) lwA= 0

consists of all combinations of loops excluding the loop created by

appending the branch WA(S ) . This equation for WE(S ) is identical to

Mason's rule or the loop rule for open graphs. Rewriting Eq. 7 in

words we have

_(pathz. i) [I + _m(-l)m(loops of order m not touching path i)]

wE(s)=
[i + _m (-l)m(loops of order m)]

In Fig. 2, this equation is applied to the basic networks discussed

st.

previously where wj(s) = p.ej J, j = a, b, or c. Consider the self-
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loop network given in Fig. 2. The path from node 1 to node 2 is
st

a

Wa = Pa e The topological equation for the closed portion of the

stb st Stb]_lgraph is I - wb = i - pb e Thus WE(S ) = pa e a[l - pb e . From

the expression for WE(S), we have

and

-I
PE --WE(0) -- Pa (I - Pb )

sta Stb]_ IME(S) = wE(s) = (i - pb ) e [i
WE(O ) - pb e •

Solving for _IE and _2E using Eq. 2, yields

st Stb)_l st Stb)_2
_IE = (i - pb)[tae a(l - pb e + e a(l - pb e

and

-I -2

-- [i pb][ta(l - pb ) + (i -pb ) Pbtb ]

 pb)=t +t b -
a Pb

_2E = (I - pb)[ta 2 (i - pb )-I + ta(l

Stb_
Pbtb e J

s=O

pb )-2 Pbtb + ta(l pb )'2- Pbtb

+ 2(1 - pb)'3(Pbtb )2 + (I - pb )-2 Pbtb 2]

+ 2 tatbPb(l - pb )-I + 2(Pbtb)2(l - pb )-2 + Pbtb2(l - pb )-I.

Using the above, the variance, VAR, of the time to traverse the path,

given it is taken, is

VAR = _2 . (_i)2 = Pbtb2(l _ pb)-i + (Pbtb)2(l _ pb)-2

= Pbtb2(l - pb)-I [i

= Pbtb2(l - pb)'2 .

+ Pb(l - pb )'I]
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This same result is obtained by evaluating K 2 from Eq. 3. For compari-

son _2 can be obtained by enumeration of all paths multiplied by the

square of the time to traverse the paths, viz_._._u.,

i - Pb

_2 =

oo

i j,,2]_a PaPbJ(ta + '

where is a normalizing factor.
Pa

The discussion up to this point has been restricted to the situa-

tion in which all time intervals were considered as constants, and,

hence, the variability or uncertainty in project duration was due

entirely to the selection of branches in the realization of the net-

work. In the next section, additional variability due to uncertainty

in the time to traverse a branch that is realized will be included.

INCORPORATION OF RANDOM VARIABLES

Consider the branch

(Pa;_)

where t is a random variable.
a

branches in series, viz_,

This branch can be represented as two

Conceptually the second branch can be thought of as a set of parallel

branches, each branch having a probability, pj, of occurring with

associated time, tj, viz.__._m.,
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(Pa;0)

(Po;to)

where p_ and t. are obtained from knowledge of the distribution of t .
J j a

Now the t. are constants and the analysis can proceed as discussed
J

previously. For example, suppose_ is distributed according to aa

Poisson distribution with parameter _. Then

kJ e "_

pj = P(tj = j) = j:

From Eq. 7 we obtain

co

wE(s) = w (s)a wj(s)
j--o

where Wa(S) = Pa and w.(s)j = pj esj

Now

QO _ OO

j_- = j-_ eStj = j_:O "_..k = ek(e sWj(S) pj eSJ -i)
• °__

which is the M.G.F. for the Poisson distribution. This discussion

leads to the important result that the M.G.F. can be substituted

directly on the branch to describe the time parameter. Thus random

Since the parameter under consideration is time, which is an

additive parameter, any transformation that causes the addition of

two or more random variables to be a product of the transforms of the

random variables is appropriate. Thus the Laplace transform and the

Fourier transform (the characteristic function) would be acceptable.

The M.G.F. was chosen because of its wide use and the fact that complex

variable theory is not a prerequisite for its use. In Appendix B, the
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variables can be employed in the network without additional conceptual

difficulties.

This result could have been the starting point for the analysis,
stsince M(s) = E[eSt}, which is the reason for the e transform used

previously. It is recognized that the M.G.F. for a constant, t, is
st

e and, hence, the constant time situation is a special case of the

above result. In the contex_ used here t is not limited to discrete

values. If t has a continuous distribution, then an integral would

replace the summationoperator and the M.G.F. would again result.

Figure 3 presents the equivalent network for the simple combinations

of the branches discussed previously.

momentgenerating functions are given.

In Appendix A, Table 4, common

Network Equivalent Equivalent M.G.F.
type function, WE(S) ME(S)

PaPb Ma(S)M_(s)(a) Series

PaMa(S) + PbMb(s)(b) Parallel

PaMa(S)[l - PbM_(s)] -I(c) Self-loop

Ma( S)Mb(s)

p i b][PaMa(S) + PbMb(s)]a+P

(i - Pb)Ma(S)[l - PbMB(s)] "I

Fig. 3--Reduction of networks with stochastic time intervals

Recall that the expressions given in Fig. 3 are for the basic net-

works. To show the power of GERT, suppose in Fig. 3 it is assumed that

the M.G.F. for each branch is for the Poisson distribution. Then part

(a) of Fig. 3 shows that two random variables in series each having

Laplace transform will be introduced to simplify inversion and complex

convolution concepts. If the parameter is simply a count, then the

generating function or equivalently the z-transform can be employed.(lO)
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a Poisson distribution result in an equivalent network whose time

element also has a Poisson distribution. This is the sameas saying

the sumof two Poisson distributed randomvariables is Poisson dis-

tributed. An interpretation of part (b) of Fig. 3, assuming Pa + Pb = i,

is that the equivalent network is composedof samples taken from two

Poisson distributions where the values are drawn in the ratio of Pa to

Pb" Thus the equivalent is a mixture of two Poisson distributions which

is not Poisson. (13'14'15)" Note that in part (b) of Fig. 3 no assumptions

and _b were made and mixtures of anyregarding the distributions of ta

distribution can be studied. Although the loop network in part (c) of

Fig. 3 appears as a simple network, it represents a complex stochastic

process, namely a sum of a random number of independently distributed

random variables. This interpretation results when it is considered

that the number of times the self-loop is realized is a random variable,

as is the time interval realized on each transfer about the loop. In a

later section a more detailed analysis of this network will be presented.

In the preceding paragraphs it has been assumed that the times on

the branches are independent random variables. Throughout this Memor-

andum this assumption will be made. If the times are not independent,

then the M.G.F. will have to be conditioned not only on the branch

being realized, but also on the time for which the branch is dependent.

In the next three sections the procedures discussed in this section

will be illustrated and applied.
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IV. EVALUATION OF COMPLEX NETWORKS

In this section GERT will be used to evaluate: (i) a network

with multiple loops; and (2) a network with multiple input and output

nodes. Specific applications are discussed in the following two

sections; thus the emphasis here is entirely on the mechanics of the

evaluation portion of GERT with a minimum of descriptive material.

Recall that from the WE(S) function the probability of realizing

th
the output node is obtained from PE = WE(°) and that the n moment of

•the time to traverse the network is given by _nE _s n =o

In this section only the WE(S ) function will be derived. The use of

the information contained in the WE(S) function is dependent on the

application and the system of which the stochastic network is a model.

EXAMPLE I. MULTIPLE FEEDBACK LOOPS

Consider the network given in Fig. 4:

L

w13

Wl0 w 9 w I

w 5 w 4 w w 6

Wl \l J>.. J w2 \i_'_'-_J w3

Fig. 4--A complex network
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In Table I a list of the loops of order i, 2 (nontouching pairs),

and 3 (nontouching triples) is presented:

Table i

LISTINGOFLOOPSFORCOMPLEXNETWORKOFFIGURE4

Elements of Nontouching
Loo___._p Loop Associated Loops

i

L I WlW2W 3 -- L 5, L 6 L5L 6wE

L 2 w4w 5 L 3 , L 6 -

L 3 w6w 7 L 2 , L 5 -

L 4 w2w6w8w 5 - _

L 5 W9Wlo L 3, L 6, L I LIL 6

L 6 WllWl2 L 2, L 5, LI LIL 5

L 7 w2w6wl2Wl3W9W 5 -

Nontouching Association

of Three Loops

From Table I and the topological equation, we have

7

H(s) = I - _ Li + LIL 5 + LIL 6 + L2L 3 + L2L 6 + L3L 5 + L5L 6 - LIL5L 6 = O.
i--i

At this point the problem has been reduced to algebraic manipulations

identical to the standard signal flowgraph manipulations. The resulting

equation for w E (suppressing the s for convenience) is

I - W9Wlo - WllWl2 + W9WloWllWl2 JWE = WlW2W3 H(s) ll/w E O

where H(S) ll/w E . O =

I - (w4w 5 + w6w 7 + w2W6WsW5 + W9Wl 0 + WllWl2 + w2w6w12w13w9w5 )

+ w4w5(w6w 7 + WllWl2) + w6w7W9Wlo + wgWloWllWl2-
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Mason's Loop rule could have been employed and wE obtained

directly from the graph illustrated in Fig. 4. A digital computer

program has been written that computesthe probability that an output

node is realized and the first two momentsof the time to realize the

output node, given that it is realized. The program is discussed in

Appendix A. This program makes the analysis of larger problems purely

mechanical.

EXAMPLE 2. MULTIPLE INPUT AND OUTPUT NODES

The next example involves multiple input and output nodes, as

illustrated in Fig. 5:

w 2

lw4 w3

w

w 7

Fig. 5--A network with multiple input and output nodes

From Fig. 5, the following equivalent branch equations can be obtained

by using Eq. 7:

w3(w I + w4w 6)

WEl = i - w2

WE2 --w4w 7

w3w5w 6

WE3 = i - w 2

and WE4 = w5w 7.
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The probabilities of the branch being part of a realization and

the momentsof the times associated with an equivalent branch, if it

is part of the realization, are computed from WEj as previously

discussed.

Supposeit is given that Pa proportion of the time node i is

the starting node and (i - pa) proportion of the time node 4 is the

starting node. Given this information we can write directly that

Ws3= PaWEl+ (i - Pa)WE3

and Ws6= PaWE2+ (i - Pa)WE4.

This can be seen from the following network:

Pa

The relationship between this network (including nodes 2 and 5) and

Markov chains is seen in the transition probability matrix given

below, where a blank indicates a zero entry:
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S

I

2

3

4

5

6

S i 2 3 4 5 6

Pa i - Pa

Pl P4

P2 P3

I

P5

P6 P7

i

A network is seen to represent a sparse transition probability matrix.

The stochastic network also includes the concept of transition time.

For the above matrix it was assumedthat if either node 3 (state 3) or

node 6 (state 6) was realized then the network would be realized.

Thus nodes 3 and 6 represent absorbing states and once reached, the

process never leaves these nodes. This concept corresponds to a self-

loop about nodes 3 and 6 or a "i" in diagonal of the above matrix in

rows 3 and 6.

A stochastic network corresponds closely to processes of the semi-

Markov variety. (16) The main theorems of semi-Markov processes pertain

to processes whose underlying Markov chain is ergodic. In network

terminology an ergodic chain is one in which every node can be reached

from every other node in a finite numberof branch transitions.

Quantities of interest in semi-Markovprocess theory are the steady-

state probability of being in a particular state, and the steady-state

percentage of time spent in a particular state where a state includes
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all activities represented by the branches leaving a node. From these

quantities other pertinent information can be obtained, such as mean

recurrence time of a state. For stochastic networks, the states are

normally transient and the basic theorems of semi-Markov processes are

not of interest. Whitehouse(17) has developed techniques by which

GERTcan be used to analyze stochastic networks that are ergodic in

the Markov chain sense. He has applied these techniques to analyze

inventory and queueing problems.
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V. APPLICATION OF GERT TO PROBABILITY PROBLEMS

In this section GERT will be applied to:

i. The development of moment generating functions for several

probability laws.

2. The solution of complex probability problems.

3. The analysis of stochastic processes.

The application of GERT not only solves these problems but transforms

a relatively inductive process into a deductive and algebraic procedure.

The benefits from a teaching standpoint are significant.

DEVELOPMENT OF FAMILIAR MOMENT GENERATING FUNCTIONS

Example 3. The Geometric Probability Law

Consider the problem of determining the number of trials required

to obtain the first success in a sequence of Bernoulli trials in which

the probability of success at each trial is p. The number of trials

is a random variable which obeys the Geometric Probability law.

To represent this problem in network form, define two nodes:

let node 2 represent the event "first success" and node I the event

"no successes." The problem can be put in network form by realizing

that the process starts at trial number zero with no successes (node i)

and can on one trial stay in (or return to) the state of no successes

(node i) with probability q, or have a first success (go to node 2)

with probability p. The time it takes for either move is one trial

or time unit.

This section contains theoretical applications of GERT and could

be bypassed by readers interested solely in practical applications.
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Thus, the stochastic network for this process is:

WE(S) = pe

spe -- i - qe s

The M.G.F. of the number of trials required to obtain the first

success is

WE(S) _ pe s

ME(S) - WE(°-_ i - qe s

where w_(O) = i since p + q = i.

of the geometric distribution.

ME(s ) is recognized as the M.C.F.

In this example, the second parameter

of the ordeTed pair was a trial, not a time interval, i.e., each

success or failure corresponds to one trial. GERT permits a variable

time interval for a success or failure. Thus if the time for a trial

is Poisson distributed with parameter
a

failure, then

WE(S) =

k (e s-l)
a

pe

%b(eS-l)
i - qe

for a success and kb for a

From this expression it is seen that PE = i, i.e., node 2 is always

realized, and ME(s) = WE(S ) . The mean and variance of the time to

obtain the first success are given by

and

= _ [£n ME(s)] -- X + _pkbKI _--s a
S=O

_2

K2 =- [%n ME(S)] = ha
_s 2 s=o

+ _pkb(lb + I) + (p_%b)2
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For the case where the second parameter is a trial, Huggins(IO)

analyzed the problem by employing the probability generating function.
s

This is equivalent to substituting x=e in the above graph which yields

px
WE'X_ = I - qx

The use of probability generating functions is described in detail

by Feller. (18)

Example 4. The Negative Binomial Probability Law

A more complex problem is the determination of the number of

th
failures encountered before the r success in a sequence of independent

Bernoulli trials. The stochastic network is

s s s s
qe qe qe eqe

Note that since only failures are counted, the number of trials for

a success is set equal to zero. In this problem there are r nontouching

self-loops and the topological equation is:

r()H(S) = i - _ +_ r jj=l J (-I) J(qeS) = 0.

Solving for WE(S ) by employing the binomial expansion yields

r

since WE(O ) = I.

ME(S ) is recognized as the M.G.F. of the negative binomial as expected.
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A more direct procedure for solving this stochastic network is to

reduce the network in segments. Consider the basic element as

s

qe

p

From the above it is seen that there are r of these equivalent branches

in series and

( )rWE(S)=N(s)=
l-qe

This example demonstrates the importance in some cases of employing

the reduction procedure first for part of the network and then for

the entire network.

Example 5. A Modified Negative Binomial Probability Law

As an extension of Example 4, consider the distribution of the

th
number of trials required before the r success. In this case the

network is a series of r subnetworks of the form

and

s

qe

spe

r

WE(S)=_(s)=fPe--/_)
\l-qe s
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Example 6. The Binomial Probability Law

As a last example in this subsection, consider the distribution

of the number of successes in n independent Bernoulli trials. The

network is

I I I

q i
p S i i i i

q q

e _ _ p._e- _p_e- liii
Trial 2 _/_Trial 31

and it contains no feedback loops. After trial n there have been

O,1,2,..., n successes represented by the (n+l) nodes preceding the

terminal node. Since these outcomes are mutually exclusive, the

(n+l) nodes can be connected to a single output node. This permits

the distribution of the number of successes in n trials to be obtained.

The topological equation for this network is

and

n(n)H<s> j<pes> .n .0

WE(S ) = ME(S ) , (pe s + q)n as expected.

SOLUTION OF PROBABILITY PROBLEMS

The application of GERT to selected probabilistic problems will

be discussed below, including the drawing of the network and the

derivation of the equivalent network equations.
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Example 7. Dice Throwing

Consider the problem of determining the number of throws of a

pair of dice required to obtain three consecutive sevens if the

probability of obtaining a seven is p and the probability of not

obtaining a seven is q. The network for this problem is

_ qe

__ peS pe s

For this network

WE(S) =

3

(pe s)

2 3

l-qeS-pq(e s) - p2q(eS)

3

(pe s) (l-pe s)

3

l-eS+(pe s) (l-pe s)

Since WE(O ) = i, ME(S ) = WE(S ) and the M.G.F. for this specific

problem is obtained. Extension to the general case of n consecutive

values of seven (or any other possible number) is straightforward

with the result that

WE(S) = ME(s) =

n

(pe s) (l-pe s)

n

l-e s + (pe s) (l-pe s)
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For example, the M.G.F. of the numberof throws to obtain i0 sevens

where the probability of obtaining a seven is 1/6 is

(i/6 eS)lO(l - 1/6 eS_
"E(S) i

i - es + (1/6 eS)10(l - 1/6 es)

Example 8. The Thief of Basdad.

The following problem has been abstracted from Parzen (19) The

thief of Bagdad has been placed in a dungeon (node D) with three doors.

One door leads to freedom (node F), one door leads to a long tunnel,

and a third door leads to a short tunnel. The tunnels return the

thief to the dungeon (node D). If the thief returns to the dungeon

he attempts to gain his freedom again, but his past experience(s) do

not help him in selecting the door that leads to freedom, i.e., the

probabilities associated with the thief's selection of doors remain

constant. Let PF' Ps' and PL denote the thief's probabilities of

selecting the doors to freedom, the short tunnel, and the long tunnel,

respectively. The network for this problem is

PLML (s)

_P_F (s)

and

WE(S) :ME(S) =
PFMF (s)

i - PsMs(S) - PLML(S)
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3s s
M_(S) = e and M (s) = e

s

From this equation for ME(s), the moments with regard to the time it

takes for the thief to reach freedom are completely characterized.

o

= = = MF(S ) ,For the example given in Parzen, PF Ps PL 1/3 and = e = i

Thus the expected time for the thief to

obtain his freedom is

_i = tF + _F [PLtL + psts] -- 4 time units.

It is interesting to note that the introduction of random variables

for the times associated with each activity would not alter the

formulation part of this problem. Only the algebraic manipulations

are increased.

Example 9. A Three Player Game

(20)
Let us examine another problem taken from Parzen. Three

players (denoted by A, B, and C) take turns playing a game according

to the following rules: at the start A and B play while C sits out;

the winner of the match between A and B then plays C; the winner of

the second match then plays the loser of the preceding match until

a player wins twice in succession, in which case he is declared the

winner of the game. The network for this game is given below:
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PABHAB

PAcMAc
PABMAB

PA

PcBMcB

where PIT denotes the probability that I defeats J; I, J = A,B,C and

MIj denotes the M.G.F. of the time required for I to defeat J. The

resulting equivalent network for this game is
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The above threebranches of the resulting equivalent network can

be examinedseparately. Consider the branch from S to A2. Redrawing

the network we have

WBC

WAB WAC

"CB wAC

and

wSA 2 --

WABWAc (I-_A ) + WBAWcBWAcWAB (I-LAA )

(I-LBA) (I-LAA )

where LAA = wcAwBCWAB and LBA = WcBWAcWBA , where the topological

equation for an open graph of two disjoint loops is [I-LI(1)]EI-L2(1)].

The expression for wSB 2 will be identical to the above with B and A

interchanged. For the branch from S to C2, we have

WABWcAWcB(I-LBA) + WBAWcBWcA (I'LAA)

WSC 2 = (I_LBA) (I-LAA)

The procedures for obtaining the M.G.F. can now be applied. In

Appendix A this problem is analyzed using a digital computer program.



-53-

If it is desired to obtain the M.G.F. of the time to the end of the

game, then we add three branches to the resulting network and obtain

Then

WSEND(S)= wSA2 + wSB2 + WSC2 = MSEND(S)

since the probability that the gameends is one (WSEND(O)= I).

A RANDOM NUMBER OF RANDOM VARIABLES

As discussed previously, the time to traverse a simple network

consisting of a single self-loop and one forward branch is a specific

example of a random variable, which is a sum of identically distributed

random variables where the number of terms in the sum is itself a

random variable. Consider the network

Wb(S ) = PbMb(s)

= Pa

with Pa = I - Pb"
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Breaking the self-loop into two parts for discussion purposes

we have

Mb(s)_ b Pa

From this illustration it is seen that the self-loop is taken once

2

with probability Pb' twice with probability Pb ' and n times with

n
probability Pb Each time the self-loop is traversed a time is

drawn from the distribution of _. Since the time to traverse the

"a" branch is zero, the time to go from node i to node 2 is the sum

of the times resulting from traversals of the self-loop. With this

interpretation it is seen that the self-loop does portray a specific

type of random variable, which is a sum of a random number of

identically distributed random variables. The equation for the

variance of a random sum of random variables will be verified by

analysis of the above network.

From the network it is seen that

WE(S ) =_(s) = Pa [i - PbMb(S)] "I since WE(S) = i.

Taking natural logarithms and finding the first two moments about

the mean results in the following:

In ME(S ) = In Pa " £n[l - PbMb(s)]

d [In ME(s)] = PbM_(s)[l -Ids - PbMb (s}]
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where

5M b (s)

Setting s = 0 yields the first moment, K I

K I = pb_(O)[l - PbMb(O)]-i

Pb

- i - Pb _(o)

= E[N}E{ tb}

where N is the number of times the self-loop is traversed. To compute

E[N} we apply GERT to the network

S

Pb e

-i Pb
= and

which yields MN(S ) = (i - pb)(l - pb es) and E_N} i - Pb

= E2[N}-- + E[N}. The second moment about the mean, K2, isVAR

obtained as

ds 2 [Ln Me(S)]s=o = [PbM_(s)]2[I " PbM_(s)]'2

+ Pb_(S)[l - pb_(S)] -I} = E2[N}E2[tb} + E[N}E[tb2 }.
S=O

To show that this is equivalent to the standard form, (19) we write

K 2 = E2[N}E2{tb} + E{N}[Var[t b} + E2{tb }]

= E2[tb}[E2[N} + E[N}] + E[N}Var[tb}

= mm[tb}Var[N } + E[N}Var{t b} ,
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and the desired expression for K2 is obtained. Higher cumulants can

be calculated directly by differentiation of the _n Me(S) .

This problem demonstrates the power of GERTin that the M.G.F.

of a system which consists of manyself-loops and combinations of

self-loops can be obtained directly using the topological equation.
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VI. APPLICATION OF GERT TO ENGINEERING PROBLEMS

In this section the emphasis will be on the description of the

problem and the development of the stochastic network portrayal of

the problem. The discussion of the procedure for obtaining equivalent

networks will be held to a minimum.

EXAMPLE iO. A MODEL OF A MANUFACTURING PROCESS

GERT can be employed to model and analyze manufacturing processes

if it is assumed that steady-state conditions exist and that the

M.G.F. of the times spent at an operation center can be obtained. The

level of aggregation of the times at an operation center depends on the

availability of data. Two levels of aggregation would be: (i) a

single M.G.F. defining the time from receipt at the center to the time

it was removed from the center; and (2) two M.G.F. representing a

waiting time distribution and a service time distribution. Either level

of aggregation is amenable to GERT, as will be discussed in this example.

On a production line a part is manufactured at the beginning of

the line. The manufacturing operation is assumed to take four hours.

Before the finishing operations are started on the part, it is

inspected--with 25 per cent of the parts failing the inspection and

requiring rework. The inspection time (including waiting for inspection)

is assumed to be distributed according to the negative exponential

distribution, with a mean of one hour. Reworking takes three hours,

and 30 per cent of the parts reworked fail the next inspection. This

inspection of reworked items is also distributed according to the

negative exponential, with a mean of one-half hour. Parts which fail
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this inspection are scrapped. If the part passes either of the above

inspections, it is sent to the final finishing operation, which takes

iO hours 60 per cent of the time and 14 hours 40 per cent of the time.

A final inspection, which takes one hour, rejects 5 per cent of the

parts, which are then scrapped. The stochastic network for this

production line is:

Reworked
Part

Inspection _
.3(I-2S) -I

ManuP:::ur ing InFs;rStion Reworking _ Scrapped

f --_ • .05e-

Finishing Shipment

Operations of
Accepted

Parts

From the network we have

wBI(S) = e4S(.25)(l - s)-l(e3S)(.3)( 1 . 2s) "I

+ e4S(.25)(l - s) -le3S( .7) (l - 2s)'l[.6el0S + .4e14S](.05) es

+ e4S(.75)(l . s)'l[.6e los + .4e14S](.O5)e s

and

WB2(S ) ,, e4S[(.25)(l - s) "le3S( .7) (l - 2s) "I

+ (.75)(1 - s)'l][.6e los + .4e14S](.95)eS .
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Setting s = o we have

WB2(O)= [(.25)(.7) + (.75)](.95) = 0.87875

and

WBl(O) = 0.12125.

WB2(s)
From previous developments we know that MB2(s) = _ and

WBl(S)
MBI(S) WBl_ . These two M.G.F. characterize the distribution of

the time required for a part to flow through the production line•

Although transit times were not included in this example, they are

merely a simple addition.

It is interesting to note that in the above example waiting time

and service time were aggregated into one distribution. A more

realistic pictorial representation of a single channel queueing system

is

Waiting Time Service Time

where a part (unit, or customer) arrives and will have a waiting time

obtained from a waiting time distribution and then a service time

obtained from the service time distribution• In stochastic network

form this reduces to
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where it is assumedthat both paths must be taken (one of the waiting

times is zero). The stochastic network shownabove can be cascaded

to form tandemqueueing systems. The problem involved in solving

this cascadednetwork will be input availability, since the waiting

time distribution for the second, third, and higher service stations

is difficult to derive. If the input data is available then it is a

simple application of GERTto obtain results (such as the distribution

of the time through the system) for networks of queueing systems.

EXAMPLE II. WAR GAMING

In this example, a simple air duel model will be structured in

stochastic network form and GERT applied for evaluation purposes.

An interceptor is alerted and is assigned a specific bomber as

its target. The time for the interceptor to climb to altitude,

approach the bomber, and make a pass is a random variable with M.G.F.,

MGBK(S), if the interceptor shoots down (kills) the bomber. If the

interceptor misses, then it will be assumed that the time taken is

from the distribution whose M.G.F. is MGBM(S ). There is a third

possibility, viz., the bomber will shoot down the interceptor on the

first pass. The M.G.F. for this case is symbolized by MGIK(S ). If

the interceptor misses, then there are successive passes made at the

bomber; however, after each pass there is a probability that the

interceptor's mission will have to be aborted. First an infinite

number of passes will be considered, then a restriction on the number

of passes will be imposed. The stochastic network is
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Missed
Passes

PGBKMGBK(s)

PGBMMGBM(s)

PBM s)

PAMA(S)

Bomber
Killed

MBK(S)

Mission
Aborted

MGIK(s) PlK MIK(S)

Interceptor
Killed

PGBKMGBK(S)[I - PBM_M(S)] + PGBMMGBM(S)PBKMBK(S)

and WGB(S ) = [I - PBM M_M(S)] "

The expressions for WGl(S ) and WGA(S ) are computed in a similar manner.

If the number of passes is restricted and the probabilities and

distributions of times change for each pass, then the network would be:

PBGK MGBK(S)

PMIMMI (s)

PB IMB i(I PBN_N (s)

Bomber

Killed

(s)

PGIK MGIK (s)

PA IMA i

(s)

Mission

Aborted

PlNM_N (s)

Interceptor
Killed
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For this network we have

WGK(S)= PGBKMGBK(S)+

WGI(S) -- PGIK MGIK(S) +

and

WGA(S) =

N

N

j=l

[ ipi is]p 1
r[j ]"=_i PMiMMi(S) PljM_j (s)

i=_l PMiMMi (s) ] PAjMAj (s)

More complex air duel situations can be modeled along the lines

presented in this example.

EXAMPLE 12. ANALYSIS OF RESEARCH AND DEVELOPMENT EXPENDITURES

Eisner (5) suggested the introduction of probabilistic elements

on PERT networks in order to study R&D problems. In a recent article,

Graham, (21) using the concepts presented by Eisner, derives the network

as shown in Fig. 6. For each branch of the network, Graham gives the

probability that the branch is realized, given that the preceding node

is realized, and the time and cost (assumed to be constants by Graham)

associated with the activity represented by the branch if the activity

is performed. These values are inserted on the GERT network in Fig. 7

for this problem by an ordered triple of: probability; time (weeks);

and cost in $I000 units; viz_____.,(p, t, c). Time in this example is not

a duration but the amount of effort required to perform the activities

measured in weeks.

Several changes were made in the construction of the GERT network.

First, the AC and DC control investigations (activities B and C) are
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B

F

No

Yes

No

D

®

H

K ®
Yes

No

J ®

Yes

Events

1 Feasibility study indicates electri-

cal control of high temperature

system is/is not feasible.

2 AC control found suitable/unsuitable.

3 DC control found suitable/unsuitable.

4 Optimum integration of AC/DC circuits

achieved.

5 Unit found to be wlthin/outslde

potential market price.

6 Pneumatic control found to be

feasible�unfeasible.

7 Unit found to be within/outside

potential market price.

Activities

A Pneumatic feasibility study.

B AC control investigation.

C DC control investigation.

D Report writing.

E Investigation of optimum AC/DC

integration.

F Report writing.

N®
Activities (continued)

G Investigation of optimum

AC/DC integration.

H Economic analysis of system.

J Report writing.

K Report writing.

L Report writing.

M Economic analysis of system.

N Report writing.

O Report writing.

Outcomes

I Project dropped.

II Project dropped.

III Project dropped.

IV Product put into produc-

tion and marketed.

V Project dropped.

VI Project dropped.

VII Product put into produc-

tion and marketed.

Fig. 6--Decision box network
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performed simultaneously and should be indicated on the network with-

out the aid of a bracket. The procedure for drawing these specific

activities would be:

which can be reduced to the branch connecting node i to node I' in

Fig. 7. The branches are shown in series because both studies are to

be done and the time effort and costs are additive. Second, nodes

I and II do not result in the project being dropped as implied in Fig.

6. Also the decision nodes represent specific events, not elther-or

type of events. For ease of reference between Figs. 6 and 7, nodes

have been labeled with two numbers (2 and 3) and the complements of

these numbers (_ and _). Thus the node, 2_, represents the event AC

control has been found to be suitable and DC control has been found

to be unsuitable. The detailed segment of the network between node

i' and combinations of nodes 2, _, 3 and _ would be:
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Considering only the network from I' to 25 we have

- (1,0,0l./

and

Q (.24,1,1.5) Q

as shown in Fig. 7. Third, three terminal nodes (U, S, and T) have

been added. Node U represents the event "project dropped," S repre-

sents "project successful," and node T represents the event "project

terminated," whether it was successful or not.

The GERT analysis for the network presented in Fig. 7 requires

the extension of the w-function to handle two additive parameters.

If t and c are independent or information is only desired about them

Slt+s2c

separately, the w-function for a branch becomes W(Sl,S 2) = pe

For an event of interest, say IV, we have

Wl.iV (sI ,s2) 8Sl+40s2_ [i 2Sl+ll'5s2 2Sl+ll'5s2= .7e J 24e + .24e

+ .36e 2sl+20s2] . [(e5Sl+2Os2) ITeSl+l'5s2)] "
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The performance measures associated with event IV are computedby

PI-IV = Wl-Iv(O'0) = (.7)(.84)(.7) = 0.4116,

= __[ i 1,0)] 16.00 weeksE[tI,IV} _sI el_-iV Wl-lv(s : ,

Sl=O

and E[CI.IV] = _2 [pl I ]IIV Wl-IV(0's2) = 76.643 (in thousands).

s2=0

where the expected time and cost are conditioned on the realization

of node IV. Higher moments can be calculated by recognizing

M(Sl,S 2) = _p W(Sl,S2) as the bivariate M.G.F

EXAMPLE 13. COSTS ASSOCIATED WITH A LARGE PROGRAM

For a large program there may be independent projects. Associ-

ated with the projects are both time and costs, which may be related.

If a project is successfully completed, we can consider it to lead to

one of the following conditions: (i) fulfill the requirements for the

program in the area under concern, in which case there _rill be no

continuing project; (2) activate anew project; or (3) produce results

which require a reinvestigation of work accomplished on preceding

activities of the project. If a project is not successful then it may

have to be done over, or a different approach taken, or the entire

program aborted.

As an example of this type of problem, consider the stochastic

network shown below of three independent projects, all of which must

be completed in order for the total program to be a success:
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Successful
?rogram

Aborted
Program

The procedure discussed in this Memorandumcan be used to compute

the M.G.F.'s of both the time and costs to go from "S" to any of the

three project end points (E) and the three project abort points (A).

The extension to the node "successful program" requires a procedure

for computing the distribution of a maximumof three randomvariables,

as can be seen from the following reduced network:

MEI

Successful
Program
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For a small network this can be attacked via integration methods.

For large networks the techniques discussed in Appendix B may be

appropriate. A similar situation exists for the unsuccessful completion

of the program where there are three branches going from the "S" node

to the abort node. In this case any of the branches leading to the

abort node will cause the program to be aborted; hence, the term

INCLUSIVE-OR.These problems are discussed in detail in Appendix B.

This example is included not as a solution to a problem, but to

raise questions of a practical nature. For the network shown it was

assumedthat aborting project I does not automatically abort projects

2 and 3, but that they continue until either their respective end or

abort nodes are reached. This is unrealistic. A mechanismfor

including this project interdependence is required. Onepossible

device would be a switch placed in the network at points where it

would be possible to halt a project based on results from other

projects. This too is an area for future research.

The examples discussed in this section demonstrate the power and

the diversity inherent in GERT.
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VII. THE REVIEW PROCESS

The analysis of stochastic networks discussed so far has concentrated

on obtaining performance measures for a specified node. These performance

measures can be calculated directly from information concerning the

branches. In a review process it is desirable to be able to make state-

ments regarding: (I) confidence limits associated with the system per-

formance measures; and (2) sensitivity of the system performance measures

to changes in parameters of individual branches.

CONFIDENCE STATEMENTS

The primary outputs of a GERT analysis are the probability of realiz-

ing a node, and the M.G.F. of the time to realize a node given that it

is realized. A typical question which might be asked is 'What is the

probability of realizing a node in T time units?" The answer to this

question involves the joint occurrence of realizing the node and the

time to realize the node in less than T time units. Symbolically this

can be written as

P (AB) = P(A) P(BIA )

where A denotes the event "node is realized" and B denotes the event

"time of realization of node in less than T time unit."

The quantity P(A) is obtained directly from the GERT analysis. The

quantity P(BIA) must be derived from M.G.F. obtained from the GERT analysis.

A clarification in terminology is required here: the M.G.F. obtained from

the GERT analysis is really a conditional M.G.F., since it is conditioned

on the realization of a specific node; thus to obtain P(BIA) it is necessary

to obtain the distribution function associated with the derived M.G.F. This

problem is referred to in the literature as the inverse transform problem.
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The most commoninversion method is a table look-up operation. For

GERTproblems this does not appear practical, due to the complexity of

the M.G.F. derived.

A second inversion method is to use an inversion formula. For systems

involving only constant times, the inversion formula can be applied by

inspection, since all terms are of the form pest, and the density function

is described by all pairs of p and t. For more complex expressions it may

be more appropriate to employ the Laplace transform or the characteristic

function in the GERTanalysis. For these transforms, complex inversion

formulii exist. Discussion of the inverse Laplace transform is given in

Appendix B.

A third inversion method is to calculate the first n momentsof the

distribution function from the M.G.F. These moments(the numberof

momentsused depends on the technique employedand the accuracy desired)

can then be used to approximate the distribution function. The two most

widely used techniques for this approximation are Pearson's curves and

Gram-Charlier series. These techniques are discussed in the literature (22'23)

and will not be presented in this Memorandum.

As an alternative approach to making confidence statements, the form

of the distribution might be assumed. Then confidence statements can be

made, using the assumeddistribution function. For example, the distribu-

tion of the time to reach a node could be assumedto be normal, and with

knowledge of the meanand variance, confidence statements can be made.

The appropriateness of assuming a distribution form is dependent on the

specific problem under study.
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ELASTICITY AND SENSITIVITY ANALYSIS

Elasticity is defined as the ratio of the fractional change in one

* x

variable to the fractional change in another variable . The symbol _y

will be used to denote the elasticity of x with respect to changes in y,

which is by definition

x _ dx/x

_y dy/y (8)

Sensitivity, S, as used here is the rate of change of x with respect to

y, VIE___.:..,

Sx _ dx (9)
y dy "

Examples of the x-variable in the above are PE' _IE' _2E' °''' _nE' whereas

the y-variable might be pj, _lj' or _2j for all j contained in the network.

Sensitivity is an important concept in network evaluation, review, and

improvement. The calculation of performance measures of a network as a

function of the components of the network has been described as the evalua-

tion portion of GERT. A sensitivity analysis details the changes in the

performance measures as a function of changes in the components of a net-

work and, hence, is part of the review procedure. The sensitivity function

can be used in the following decision-making areas:

i. Determination of the branch that will most affect the performance

measure (if possible added dollars could be expended to affect

the change);

2. Determination of branches that should be deleted if a time sched-

ule had to be made; and

3. Determination of the next set of branches to be traversed if

scheduling of branches is permissible (this corresponds to an

adaptive scheduling procedure).

This is the usual definition of the elasticity of a function. In elec-

trical engineering publications, however, it is referred to as a sensitivity
function.
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By developing a sensitivity function associated with each branch, it may

be possible to assign a criticality index to each branch(24) Thus the

sensitivity function would provide input information for decision-making;

the actual decision-making process is outside the scope of GERT.

Since GERTprovides a procedure for obtaining expressions for PE'

_IE' _2E' etc., as a function of pj, _lj' _2j ''" , the elasticity and

sensitivity functions can be obtained directly through partial differen-

tiation. The computation of these review functions for Example8, The

Thief of Bagdad, is given below in Example 14.

EXAMPLE 14. REVIEW PROCESS FORT HE THIEF OF BAGDAD EXAMPLE

From Example 8, the equivalent w-function was derived as

WF(S) =
PF MF(S)

i - PS Ms(S) - PL ML (s)

For this example PE = i and, hence,___PE = 0 for all j. In general

_Pj

when determining the sensitivity of PE with respect to a pj, the inter-

dependence between Pi and pj must be included. For this example, we have
d

PS + PL + PF = I. Consider now _IE = _s [ME(S)]s=o from which we have

(since ME(S ) = WE(S) in this case)

PF(Ps _IS + PL _IL )

_IE = i - PS - PL + (i - PS - P2 )2

PF _IF

which upon simplifying yields

PF _IF + PS _IS + PL _IL

_IE = PF
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From this equation the following table can be obtained

Review_ =
Measure \

b_ IE

bPj

_IE

_lj

F

_iS _Ps PS

PF .bPF PF.

+ _I___L"_PL PL °

PF _PF PF.

_IF

_IE

_iS PS _PF
1

PF PF _Ps_

+ _IL "bPL PL bPF"

PF _P-'-_- _-E _PS-----_

Ps

PF

PS_IS

PF_IE

L

_iS -bPs PS 5PF"

PF .8PL PF 8PL_

+ _IL F PL bPF 1
iI _ __.

PF . PF _PL J

PL

PF

PL_IL

PF_IL

The equation for the second moment about zero is

_2E = _2F 2 _I___F[ + PL_IL] _ I
- PF PS_IS _F [Ps_2s + PL_2L]

+ _ [Ps_IS + PL_IL ]2

PF

The sensitivity and elasticity functions can be computed from Eqs. 8 and

9. A more efficient method for obtaining these functions is needed if

their use with large networks is to become computationally practical.

Suppose that the times to traverse any of the tunnels is a constant

amount. Thus

stF

MF(S ) = e

sts

Ms(S) = e

stL

ML(S) = e

and ME(S ) = WE(S ) =

I - ps e

' StF

PF e

stS st L

- pL e
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st S stL
By proper selection of s it is possible to makepse + pLe

and the denominator can be expandedin a power series, i.e.,

<i,

st S stL
1 - pse - pLe

(sisstL)k= _ PS e +
k=o PLe

In the above expression, k represents the number of feedback loops

taken (the number of times a nonfreedom tunnel is selected). The

binomial expansion can now be employed to yield

( stS StL)k k ,k,/ Sts,(k-J)/ StL, j
PS e + PL e = _ _J)_ pSe ) _pLe ) "

Substituting the above into the equation for ME(s ) yields

StF _ = ( )I p Sts_(k-j)(Pl\ StL\JME(s) = pF e _ _ k
k=o j=o J se Le # "

The density function (from which the distribution function is easily

calculated) can be obtained by inverting ME(s) one term at a time.

This involves the enumeration of all terms of ME(s) by specifying

values for k and j. Thus,

/k\ (k-j) J
ProD It tF + (k j)t S + JtL}= - = PF_j)Ps PL

for k = O, I, 2, ..., and j _ k.

For practical application the computations could stop when the proba-

bilities computed sum to a desired amount, such as 0.990. Table 2

presents the computations for the Thief of Bagdad problem for PF = 0.7,

PS = 0.2, and PL = 0.I.
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Table 2

CALCULATIONOFPARTIALDENSITYFUNCTION
FORTHIEFOFBAGDADPROBLEMWITH

PF = 0.7, PS = 0.2, and PL = 0. I, and

t F = 0, t S = 1, and t L = 3.

k

0

1

1

2

2

2

3

3

4

4

J

0

0

1

0

1

2

0

1

0

1

t =k+2j
P{t = k + 2j] = (.7)Ik)(.2)k-J(.l) J

0

i

3

2

4

6

3

5

4

6

O. 7000

0. 1400

0.0 700

0.0280

0.0280

0.0070

0.0056

0.0084

0.0011

0.0023

Total 0.9904
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With the above information, sophisticated decision making can proceed.

Decisions regarding the efficiency of a network, criticality of specific

nodes and branches, and comparison of networks are all subject to investi-

gation by the procedures described.
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VIII. AREAS FOR FUTURE RESEARCH

The capacity for growth within GERT is large. Throughout this

Memorandum avenues for future research have been discussed. In this

section a summary list of the areas for future research is given.

Analysis of other logical operations. This area of future research

is discussed in detail in Appendix B. Of major interest is the develop-

ment of approximation techniques for AND and INCLUSIVE-OR nodes. As

more familiarity is gained with GERT, the need for other logical opera-

tions such as minimum and invertor operations will become apparent.

Further research on the analysis and development of other logical opera-

tions would be worthwhile.

Computation programs. A program exists for determining the ele-

ments of the w-function of a network and for computing: (i) the proba-

bility that a terminal node will be realized; (2) the mean and variance

of the time to traverse the network, given the node of interest is

realized. There is a need to extend the program to obtain higher

moments, especially if confidence statements are desired.

Along with this, further research on methods for making confidence

statements, although not peculiar to GERT, would enhance the usefulness

of the final output of GERT.

Time-counter interdependence. For stochastic processes it is

desirable to be able to determine the distribution of the number of

counts of an event at a particular time, or to determine the distri-

bution of the time to obtain a particular number of counts. This

research area would require that both the time variable and the count

variable be included on the network using a bivariate M.G.F. Diffi-
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culties arise in the characterization of the dependenceof the two

randomvariables. Initial research on the counter-type operation has

been performed. (17)

Multiplicative variables. By multiplicative variables is meant

that the variables associated with the branches are multiplied, not

added. For example

(Pa;_a) _ (Pb;Xb) _

would be equivalent to

(pap b ;XaXb)

Extension and application of the material presented in Appendix C

appears to be a fruitful area for future research.

Review procedure. More efficient methods for obtaining the review

functions are needed. Also the use of the review functions for system

improvement and optimization is a large area for future research.

Applications of GERT. The best method for a technique to become

accepted is through application. The examples presented in this

Memorandum are hypothetical; the next step is the application of GERT

to practical problems. One such application currently under develop-

ment is analysis of a space vehicle countdown. Other areas that have

been shown to be amenable to analysis using GERT include inventory

problems and queueing problems. (17)

Applying and extending GERT in the solution of problems in the

above research areas will increase the potentialities of GERT, and

hence of the systems analyst.
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Appendix A

A COMPUTER PROGRAM FOR ANALYZING

GERT NETWORKS

A digital computer program has been written in the FORTRAN IV

language to obtain pertinent information for networks with EXCLUSIVE-

OR nodes. The program can be used to determine the source nodes, the

sink nodes, the paths connecting the source nodes to the sink nodes,

and the loops of a network. The output from the program includes:

(I) the paths and loops of a network; (2) the probability of realizing

a sink node from any source node and; (3) the mean and variance of

the time to realize a sink node, given that the sink node is realized

and given an initial source node.

The program accepts as its input the branches of the network, as

described by the nodes from whence its originates and to where it

terminates. Associated with each branch is a probability and a M.G.F.

The M.G.F. is described by a three-letter code and by appropriate

parameters of interest. The program based on this input information

determines all paths and loops of the network. From the values associ-

ated with the paths and loops of the network the desired output

statistics can be computed.

In this appendix the method for calculating the output statistics,

the operating procedure for the program, and sample problems will be

presented.

CALCULATION OF NETWORK STATISTICS

The program accepts the input information and determines the

source and sink nodes and all paths and loops of the network. In
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addition the program determines the following three values associated

with a path or loop:

i. probability of traversal;

2. the mean time of traversal; and

3. the second momentof the time of traversal.

Thesevalues are determined by the following methods. The w-function

associated with a path or loop is the product of the w-functions of

the branches which makeup the path or loop. Letting L represent a

path or loop, we have

WL(S) = H wi(s).
icL

Now the probability associated with L is

PL = WL(°) = _ wi(°) = _ Pi"
icL i_L

The expected time to traverse L is given by

_IL
WL(°) icE /\iCE _s = icE7, _li

S=O

The above says that the expected time to traverse a path or loop is

the sum of the expected times of the branches of the path or loop.

The complex analysis is given to lay the foundation for obtaining

an equation for the second moment. From the w-function we have
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_2L = 1  2WL(S)I
_ _s 2

s*o

WL(°) icL icL wiCs)

i _2wi(s) 1+ E wi- )icL _s 2

s_o

2

_wi(s)] 7_ /. i _Wi(S)

_-i cE_W--_ )_ )

2 2

_IL - _ _li + _ _2i
i¢L icL

The computer program computes PL' _IL' and _2L for all paths and

loops of the network, including loops which are products of disjoint

loops. These values are then combined through the topological equation

to obtain the output statistics desired. The equivalent w-function

for one path, A, between the two nodes of interest is given by:

A(s) i 7, (-i) i w )(s

i=l i = A(s) B(s) = N(s____)

+

where A(s) _ product of the values of all branches in the path considered;

(i)

WLk (s) = product of the values of i disjoint loops having no nodes

in common with path A;

n. = the number of loops composed of i disjoint loops;
i

w_J)(s) = product of the values of any j disjoint loops;
v

n. = the number of loops composed of j disjoint loops;
J

and B(s), D(s) and N(s) are direct substitutions. If there is
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more than one path, then the w-functions associated with each path

would be summed. For convenience, consider the one path case. The

output statistics can be computedfrom the following equations:

PE = WE(°)

= I 5WE(S) _ i [D(s) 5N(s) N(s) bD(s)1
J 5s _s_IE w E (o----_ 5s WE-T_ D 2 (s)
S----O S=O

2

i  WE(S)l

"2E : WE--_ _J

1

WE(°)

D(s) (s)

2 2

and a = _2E - _IE
E

In the above equations the values of

D3(s)

_N(s)
_S

b2N(s) etc evaluated

bs 2

at s=o, are obtained from the previously compiled values of _IL' _2L'

etc. For example

n°

bN(s)J = i + _ (-l) i 7_

Is=° _IA i=l k=l

S=O

The above equations are included in the computer program described

in this appendix.

PROGRAM OPERATING PROCEDURE

The GERT program is written in FORTRAN IV. The program has been

debugged and run on the IBM 7040-44 and the CDC 3400. The input

specifications to the program are given in Table 3. The equations

and moments of the distributions that have been programmed are

presented in Table 4. Other distributions can be handled by this
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Table 3

INPUTTOGERTPROGRAM

Each network is specified by defining its links as follows:

i. Nodebeginning the link

2. Node terminating the link

3. Type of distribution of time associated with the link

4. Probability of utilization of the link if at its beginning node

5. Coefficients defining the time distribution

Field i (cc. 1-4) = Nodebeginning link (right justified)

Field 2 (cc. 6-9) = Nodeterminating link (right justified)

Field 3 (cc. 11-13) = Type of distribution [B, D, E, GA, GE, NB, N_, P, U]
(left justified)

Field 4 (cc

Field 5 (cc

Field 6 (cc

Field 7 (cc
Field 8 (cc

Field 9 (cc

14-20)

21-27)

28-34)

35-41)

42-48)

49-55)

Field i0 (cc. 56-62)

Field ii (cc. 63-69)

See table below for definitions of
these fields. The format for all
fields is F7.3.

Type of
Dis tr ibut ion 4

P (Poisson)

B (Binomial) Prob.
D (Discrete) Prob.'l
E (Exponential_ Prob.
CA (Gamma) Prob.
GE (Geometric) Prob.
NB (Neg. Binomial) Prob.
N@(Normai Prob.

Prob.
U (Uniform Prob.

Field
5 6L _ 7 8 9

n p - - -
TI Prob. 2 T2 Prob. 3 T3
"l/a ....

1/a b - - -

p - _ _ _
r P - - -

m _ - - -

a b - - -

10

Prob. 4

Each deck of cards defining a network must be followed by a blank card

(Field i=O or blank).

II

T4
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Table 4

DISTRIBUTIONSACCEPTABLETOGERTPROGRAM

Type of
Distribution

Binomial
(B)

Discrete

(D)

Exponential

(E)

Gamma

(CA)

Geometric

(GE)

Negative
Binomial

(NB)

Normal

(NO)

Poisson

(P)

Uniform

(u)

ME(S)

(peS+l _p)n

st. st_

el e $P2 e _...

P i+p 2+. •.

-i
(1 - s/a)

-b
(i - s/a)

pe s

l-eS+pe s

. 122.

e(Sm_S (;)

sa sb
e -e

(a-b)s

Mean

np

PIT i+p 2T2 +. •.

P I+P 2+. •.

i/a

b/a

i/p

r(l-p)

P

m

k

a+b

2

Second

Moment

np(np+l-p)

PI T 12+p 2T22+. •

PI+P2 +. •.

2/a 2

b(b+l)
2

a

p2

r(I-P) (l+r- rp)

p2

2 2
m + cr

%.(1+%.)

a 2+ab+b 2

3

Input

Variables

WE(O ) ;n,p

•_ WE(°) ;PI,TI,P2,T2;

WE(O ) ; i/a

WE(O ) ;I/a,b

WE(O) ;P

WE(O) ;r,P

WE(O) ;m,o

WE(O) ; %.

WE(O) ;a,b
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program by specifying the normal distribution with meanand standard

deviation values of the distribution of interest. This follows from

th
the observation that the n momentof the equivalent function is

th
dependent only on the n or smaller momentsof the branch functions.

Thus, _IE = f(_ij ) and _2E = f(_2j' _lj )" The equations of the previous

section illustrate that _2E is not a function of the distribution

form but only the values associated with _lj and _2j"

A sample of the output will nowbe described. First, an echo

check of the input network is given as shownin Table 5.

Table 5

GERTPROGRAMOUTPUT:ECHOCHECKOFINPUTNETWORK

Input Network

1 3 D i.OOO O. -O
2 4 D 1.0OO O. -O
3 5 D O.6OO 2.OOO -O
3 6 D 0.400 4.000 -O
4 5 D O.300 5.OO0 -O
4 6 D 0.700 2.000 -O
5 3 D 0.200 7.000 -O
6 4 D 0.300 6.000 -O
5 7 D O.800 O. -O
6 8 D O.700 O. -O

-O.
-O
-O
-O
-O
-O
-O
-O
-O
-O

-O.
-O
-O
-O
-O
-O
-O
-O
-O
-O

-O
-O
-0
-0
-O
-0
-0
-0
-0
-O

-0. -O.
-O. -O.
-O. -O.
-0. -O.
-0. -O.
-0. -O.
-0. -O.
-O. -O.
-O. -O.
-0. -O.

The network corresponding to this input information is given in Fig. 8.
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Intermediate output available from the program is shown in

Tables 6 through 8. The final results are given in Table 9.

Table 6

CALCULATION OF BRANCH PARAMETERS

Input Network

Nodes and probability of selection with mean and variance of time for

each link.

From To Probability Mean Variance

i 3 1.0OO O. -O.

2 4 i.OO0 O. -O.

3 5 0.600 2.000 -O.

3 6 0.400 4.000 -O.

4 5 0.300 5.000 O.OOO

4 6 0.700 2.000 -O.

5 3 0.200 7.000 -O.

6 4 0.300 6.000 O.0OO

5 7 0.800 O. -O.

6 8 0.700 O. -O.

Table 7

LISTING OF NETWORK LOOPS

Loop of Order 1 w(O) = 0.120000

w(O) = O.1200 Nodes 3 5

Loop of Order 2

w(O) = O.1200

w(O) = 0.2100

Loop of Order i

w(O) = 0.0072

Loop of Order i

w(O) = O.21OO

w(O) = 0.025200

Nodes 3 5

Nodes 4 6

w(O) = 0.007200

Nodes 3 6

w(O) = 0.210000

Nodes 4 6

4 5
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Table 8

LISTINGOFNETWORKPATHS

NS NE Probability M T V T (Nodes in Path)

I 7 O.551163 3.4926
i 7 O.041860 18.6192
I 8 O.406977 7.6192
2 8 O.024419 19.6192
2 7 O.348837 8.6192
2 8 0.626744 4.3919

19 7059
41 2410
41 2409
41 2410
41 2410
28 6893

1 3 5 7
1 3 6 4 5
i 3 6 8
2 4 5 3 6
2 4 5 7
2 4 6 8

Table 9

EQUIVALENTBRANCHESOFTHENETWORK

Entry Exit Probability MeanTime Variance Time

I 7 0.593023 4.5604 36.2375
i 8 0.406977 7.6192 41.2409
2 8 0.651163 4.9629 37.5290
2 7 0.348837 8.6192 41.2410

SOLUTIONS OF STOCHASTIC PROCESSES AND THREE-PLAYER GAME PROBLEMS USING
GERT PROGRAM

In Sec. V of this Memorandum, an analysis of a random number of

random variables was presented. The GERT network for a problem of

this type is

( .4,t 2)

This network was analyzed for four different distributions each having

the same mean. The results are given in Table I0.
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Table I0

GERTPROGRAMOUTPUTOFA NETWORKINVOLVINGA SUMOFA RANDOMNUMBER
OFRANDOMVARIABLES

Distribution _Ii _21 _12 _22 _13 _23 _IE VarE
type

Constant 5 0 2 0 3 O 9.3333 4.4444
Exponential 5 25 2 4 3 9 9.3333 41.1113
Poisson 5 5 2 2 3 3 9.3333 13.7778
Normal 5 3 2 3 3 3 9.3333 28.4444

The first momentsof the equivalent network for each distribution

are the same, since all the first momentsof the individual branches

are the same. Note, however, the increase in the variance from the

discrete case to the exponential case. This increase is due to the

different values associated with the variance of the individual

branches. The variance in the constant case (which is a form of

discrete distribution) is due entirely to the uncertainty in branch

selection.

As a second example, the GERTprogram was used to analyze the

three-player gamegiven in Example9, in which the gameis won by

the first player to win two consecutive games. The network is shown

in Fig. 9. It will be assumedin this analysis that PAB=PBc=PcA;

that is, the probability of A beating B, of B beating C, and C beating

A are equal. Also the time element will be assumedto be one for

each gameplayed.
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s
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PBC _ PAB es

PCA _

s

'CBe

s s

PCB! e

s

PBA e

s

_BCe

s

_BA e

Fig. 9--GERT network of a three-player game

The GERT program was run to analyze the game when the independent

variable was PAB = PBC = PCA" The results of the program are given

in Table ii. Since the game is symmetrical, only values of PAB _ .5

are tabulated.

The results presented in Table ii show that player A has the

highest probability of winning the game for values of PAB in the range

0.i0 to 0.50. This is somewhat contrary to intuition. It is also

seen that as PAB moves away from the value .50, the expected number

and the variance of the games played increases until a winner is

declared.

.i
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The above examples illustrate the results obtained from the

current GERT program. The examples were chosen to be simple, yet

they do not have simple solutions.

As a test of the reader's intuition, consider the following

situation. Three contestants have weapons which they can use against

one of their opponents: man A has a probability of PA of killing an

opponent when he uses his weapon; man R has a probability of PR of

killing an opponent when he uses his weapon; and man C has a probability

of PC of killing his opponent when using his weapon. The object of

A, R, and C is to defeat the other opponents. Suppose PA > PR > PC

and R fires at A first. Then A would return R's fire. C being

rational decides he would be better off not to fire until only one

opponent is left. Two questions of interest for A are: (I) for what

values of PA' PR' and PC should A fire first and; (2) if PA = .90,

PR = .75 and PC = .40, what is the probability under the above firing

sequence of A winning?

The answer to these questions can be approached through GERT.

The network for answering question (2) is given in Fig. i0. Superimposing

a time or weapons limit on this problem introduces a second, additive,

parameter. The analysis of this problem requires a counter operation

in GERT.
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Appendix B

OTHER LOGICAL ELEMENTS

The AND and INCLUSIVE-OR nodes introduce into an analysis the

complex operations of maximization and minimization of the time param-

eter. This is in contrast to the EXCLUSIVE-OR node which required a

summing or an either-or type operation. Thus it is expected that the

AND and INCLUSIVE-OR nodes will present difficult mathematical problems.

In Sec. I, two simplifying attributes regarding AND and INCLUSIVE-

OR nodes were given: (i) the node type does not affect the analysis

of two branches in series; and (2) a feedback branch is only meaning-

ful if incident on an EXCLUSIVE-OR node. With this information, the

analysis can be directed to the study of parallel branches and series-

parallel networks.

Before proceeding, it should be pointed out that no general solu-

tion to the AND and INCLUSIVE-OR node analysis has been obtained. The

purpose here is to present concepts, approaches, and examples. Where

pertinent, approximation possibilities will be indicated. There is a

need for future research in this area which this appendix hopefully

will instigate.

THE ANDLOGIC ELEMENT

Three main problems associated with AND nodes are: (i) a semantic

problem associated with the probability of realizing a branch leading

to an AND node; (2) an analysis based on expected values leads to

erroneous results; and (3) the incorporation of the maximum operation

is computationally difficult.



-97-

The semantic problem involves the possibility that an ANDnode

will not be realized. Consider the network shownbelow:
/

(.3;-) /

First note that the output of an AND-DETERMINISTIC node must have a

p-parameter of i. This necessitates the use of the AND-PROBABILISTIC

node. Now as the network is drawn only 70 per cent of the time will

node 2 be realized, since the upper path dominates the lower path,

and when it is realized it occurs I0 time units after node i. This

can be represented by

<$i0>Q

Further, suppose the originator of the network really desired to have

the upper path occur 30 per cent of the time without the activity

which required I0 time units. This would be drawn as

(.3,0)

Both networks are feasible; however, they represent different systems.

This last network will be used to illustrate the fallacy in reduc-

ing a network by use of expected values. For the upper path, the
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expected time is (.3)(0) + (.7)(10) = 7. The probability of realizing

node 2 on the upper path is one, hence we appear to have

which reduces to

Q (1,8) Q

The above states that the time to realize node 2 is eight time units

after the realization of node I. Review of the original network shows

that 70 per cent of the time the equivalent time is I0 time units and

30 per cent of the time it is eight time units. Analyzing this network

with the w-function, we have

.3 + .7e10s

By the characteristic of the AND node, the probability of realizing

node 2 is the intersection of the probabilities of the branches lead-

ing into node 2, and the time is the maximum of the times. Procedures

for handling these two calculations will now be investigated.

Probability of Realizing an AND Node

This discussion will be limited to the situation in which all

probabilities are independent for each branch of a network. Dependence

can occur, however, by a branch being on more than one path. There are
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three distinct possibilities associated with the calculation of proba-

bilities when dealing with ANDnodes exclusively: (i) branches in

series; (2) branches in parallel with independent probabilities associ-

ated with each branch; and (3) paths in parallel with dependent proba-

bilities. For all three cases the probabilities multiply. In case 3

if Pa is included on two parallel paths, then PaNa= Pa is the proba-

bility calculation. This simple analysis leads to the result that the

probability of realizing an ANDnode in a network consisting only of

ANDnodes (input side) can be obtained by multiplying the probabilities

of each branch of the network leading from the source node to the sink

node. Several examples are given below.

For the situation presented abovewe obtain the probability of

the upper path from w(o) = .3 + .7 = 1.0 and PI2 = (I)(I) z I. Con-

sider the network J

__b )

The probability of realizing node 2, PI2' is (.3)(.4)(.2)(.8)(.5) =

0.0096. The procedure presented involves only the consideration of

branches that lead to the final node and the probabilities that those

branches are realized. Caution must be taken net to include the

probabilities that a given time on a branch is taken. This possibility
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is eliminated by specifying only ANDnodes in the network. If other

types of nodes are present, it is necessary to reduce the network.

If EXCLUSIVE-ORnodes are present that permit the realization of the

final nodeby more than one set of paths, then the sets of paths can

be analyzed independently by the above rule and the probabilities

added. For example, if the above network is altered to

/

-I r-_ <lo) f-./I

<,,o2/'.-/ o \ o_ <'.°_/xJ
(.", _f)

then P12 -- 0.0096 + 0.0960 = 0.1056 where the second factor on the

right, (.0960) = (.3)(.4)(.8), is obtained from the network

(_,0)

The time to realize node 2, given it is realized, is dependent on the

network that causes node 2 to be realized--not on the individual

branch probabilities. This is because in the realization of node 2,

all branches of the network must be traversed. The either-or situation
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defines a different network by which node 2 is caused to be realized.
_(i) (2)

For the above examplewe require the M.G.F. of t12 and _12 where

(i)

t12 = max (L + t_b; t_a + _c + tL; tL + L )

and

(2)

= _ +_f)t12 max (L + _b; ta

The M.G.F. of the equivalent network would then be

[ (11 (I) (2) (2) ]ME(S) = l-l--el2Lel2 MI2 (s) + elm Ml2(S)

where the superscripts refer to the independent networks described

previously.

It is now necessary to discuss the calculation of the M.G.F. or,

equivalently, the distribution function of the equivalent time parameter.

The Maximum of Random Variables

The preceding discussion shows that the analysis of AND nodes is

similar to the analysis of a PERT-type network. To date there is no

exact solution to the analysis of PERT networks that is computationally

tractible. The purpose of this discussion is to present the actual

methods, which for small GERT networks can be applied directly, and

which provide background information for future research on approxima-

tion methods.

Consider the calculation of the distribution function,

Fl2(t ) = Prob (_12 _ t)

where t12 = max , .
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For _12 _ t, then t a _ t and t b _ t .

The probability of this occurring is

Prob (_12 _ t) = Prob (L -<t; t_b _ t)

If _ and tb are independent randomvariables, thena

Prob (_a _ t; t b _ t) = Prob (i _ t) Prob (_b < t) ,

and we obtain Fl2(t ) = Fa(t ) Fb(t ) .

Consider now the more complex network

in which t_12 = max (_a + _b; t_a + t_d; L + _d ) "

d -<t)

= P rob (_b < t - t_a; t_ _ t - ta; t_ < t - _c ) "

N

If t > t , we have the conditional probability that
a c

Prob (_12 _ tlL > L ) = Prob (_b < t - t_a; t_d < t - t_a) .

If _ < _ , then
a c

Prob (_12 < ti_a < L ) = Prob (tb _ t - t_a; tL _ t - _c) .
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By a theorem on total probability wehave

Prob (_12 < t) = Prob (_12 < tl_a > _) Prob (% > L)

We also have

Prob (_ _ _) = Prob (_ _ t; t) = Prob (t
a c a c

> t) Prob (t < t)
a c

= [i - Prob (_a _ t)] Prob (L < t),

since ta and tc are independent. From this information Fl2(t ) can be

calculated.

There are two difficulties with the above approach: (i) for larger

networks the calculations could be intractible; and (2) for GERT net-

works the distribution functions are not known. The first of these

difficulties will have to be handled by approximation techniques, which

at this point will have to be problem oriented. The second difficulty

will now be resolved.

AND Nodes and the s-plane. GERT up to this point has dealt primarily

with M.G.F., which enabled the analysis to deal strictly with real

variables. For AND nodes it is necessary to perform some analysis

using complex variables. This will be done by introducing the laplace

transform in which the variable s is a complex variable. By definition

the laplace transform of a density function fk(t) is

Lk(S ) =J^ e-st fk(t) dt .
-u
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(Note that Lk(S) can be obtained from Mk(S) by substituting -s for s

even though the s variables are not the same.) The inverse Laplace

transform is defined by the complex integral

_l+j _

fk (t) = 2_---_
ol-j =

st
e Lk(S) ds

By a theorem in Laplace transforms, the transform of the distribution
Lk(S)

function for _k would be --s " Further, multiplication of two dis-

tribution functions, such as are required by the maximumoperation,

correspond to a complex convolution of their Laplace transforms. Thus

ol+j _

ifLI2(S) = 2--_

La(q) Lb(S - q)

q (s - q)
dq ,

where _I is chosen to separate the singularities of--

L (q) Lb(S - q)a
and

q s - q

In GERT network terminology we have:

where the symbol _represents a complex
convolution which will be

discussed by example. The practicality of this approach hinges on the

ability to perform the complex convolution operation. Fortunately in

some instances the complex convolution can be replaced by a Bromwich

contour integration, which can be accomplished through the use of
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Cauchy's residue theorem. Several exampleswill now be given to

demonstrate the approach.

Consider the specific network drawn below:

0 i
a w

O +s s
a

8b

£b+S 1s

which can be recognized as the maximum of two exponential distribu-

tions. The equation of this network is

_l+j _

i f 1( 0a ) /sl_) C_8 Ob )s Ll2(S) = q Oa + q. b +s - q dq

_l-j=

where 0 < _I < _ = Re(s).

In general,(25)(26) _i is computed from _' < _i < _ " _''

La(S)
where _' = Re(s) for which _ converges,

s

_" - Re(s) for which --
Lb (s)

converges,

and _ _ max (u', _" _' + a"), I

Looking at the singularities of 1 Ll2(S ) in the q-plane, it is seen

that the Ol-line separates them as discussed above.
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X
q = -e

a
q 0

_q = C_I + j_

I
I
I

q =_1
X

l q = s q = s +e b

I

I

q = c I - j_

By Cauchy's residue theorem the integral can be evaluated by determin-

ing the residues of the function at the poles enclosed in the contour

containing the al-line. Now the contour can be constructed to the left

or to the right as long as the function converges within the contour.

For this example the left contour is selected and the residues at q = 0

= are required. The residue at q = 0 isand q -0a

I[I( 0a q)(_)( _ eb l]I i I'0 eb )lim q 9a b b _ "q_0 _ +'s - q =s s

The residue at q = -e is
a

I [i( _a )(_)_ 0b )Iflim (0a + q) 8a + q + s - q :
q---0a b

-0b

(s + Oa)(O b + s + Oa) "

From the above

i i I_ 8b sl 0bLl2(S) = -- _ + 0b) 's b + (s + ea)(S + 0a

which can be shown to be the Laplace transform of the distribution func-

tion of the maximum of two random variables, each having exponential dis-

tributions with parameters 0a and 0b. As an extension of the above, the
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time element _ is added to both the branches, i.e., it is desired to
c

+_ ; t_b + _). Since max (L +_ ; _b + _c )determine the max (t a c c c

equals _c + max (L; _b )' we have LIB(S ) = Ll2(S ) Lc(S ) where Lc(S )

is the Laplace transform of tc. Thus if

L (s) - c
c 0 +s

c

then
LiB(S) = b + c _ s - (s + _a)(S + 0a + Ob)(s + Oc )

This example demonstrates the usefulness of working entirely in the

s-plane. Of course it would be possible to treat the random variables

directly; however, the premise is that the networks contain EXCLUSIVE-0R

nodes that can provide the L(s) function through the use of the topo-

logical equation. The main drawback to this approach is the difficulty

of the complex convolution. This difficulty is even more severe when

dealing with discrete random variables because the Laplace transforms

of many discrete functions have an infinite number of singularities.

Before leaving this proposed method of approach, the network

previously analyzed with a "dummy" crossover branch will be studied.

The network is redrawn for convenience and the equation for the dis-

tribution functions rewritten:

N
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Prob (_12 -< t) = Prob (_b _ t - tL; tL < t - ta)[l - Prob (L -< t)] Prob (_c _ t)

Prob (t_a -< t)][Prob (_ -< t)]]IC

Taking the Laplace transform yields

is LI2(S) = • La(S) • s k67 s /J_ts

+ • L [1

where _indicates the complex convolution operation. The com-

plexity of this approach can thus be seen. As a possible approximation,

the L(s) functions could be put into polynomial form and truncated at

the number of moments desired. This is a possibility for future research.

AND Nodes and Inversion Methods. In the foregoing discussion it was seen

that the maximum of two random variables or, equivalently, the product

of two distribution functions can be calculated by performing a convolu-

tion in the complex plane. From previous results the sum of two random

variables can be calculated as a product in the transform space. An

approach to the analysis of AND nodes is to use transform and inverse

transform methods so that only products need be computed and thus the

convolution operation would be avoided. Inversion methods that are

appropriate are the complex inversion formula for Laplace transforms,

Gram-Charlier Series expansion, and using the moments to fit a Pearson-

type curve. The specific inversion method would depend on the problem

being solved.
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A word of caution needs to be injected here. It is anticipated

that the w(s)- (or L(s)) functions will involve many terms. If this

were not the case, the analysis could probably be performed entirely

in the time domain. Thus the inversion formula maynot be computa-

tionally tractible. The Gram-Charlier series offers promise in that

it approximates the distribution functions by a polynomial whose

coefficients are a function of the momentsof the distribution. Since

the momentsare obtainable from the w(s) function, the Gram-Charlier

series can be obtained. Given a polynomial representation for a dis-

tribution function, J. J. Martin (27) has proposed a method of analysis

for networks involving only ANDnodes, which involves a computer

routine for convolving two polynomials. The problem of dependence

of branches has, however, not been programmed.

The above discussion again presents meaty problems for future

research. At this time a special case of GERTnetworks with ANDnodes

will be examined. The case of interest is whenall times on the GERT

network are constants and the variability in the network duration is

due entirely to path selection.

ANALYSIS OF NETWORKS WITH AND NODES AND CONSTANT TIMES

The approach to be pursued here is to develop a method of approach

for analyzing a network which can be reduced to all AND nodes and which

has branches whose w-functions are of the form _Piesti.. The w-func-
i

tions will be in this form if there are no feedback paths in between

AND nodes of the network. Extension to the case where feedback is

permitted will then be discussed.
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A few examples will demonstrate the approach.

that the network

is equivalent to Q

(l;t a)

(I ;tb)

[l;max(t ,tb)]

a Q_ •

It has been shown

Consider the network

(Pa,ta)

(I,0)_

There are four possible outcomes regarding the length of time to go

from i to 2. These are:

Outcome Probability Time

i (i - Pa )(I - eb ) 0

2 Pa(l - pb ) ta

3 (i - Pa)Pb tb

4 Pa Pb max (ta; tb)

The equivalent network in EXCLUSIVE-OR form is

[(I - pa)(l - pb ) ;0]
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and the momentgenerating function for this network is

Ml2(S) = (i - pa)(l - pb) + Pa(l - Pb)eSta + (i - pa)pb eStb

S+ PaPb e maX(ta'tb)

To add further insight into the reduction procedure, another illus-

tration is given below:

pa esta

st b
Pb e

st c
p e
c

st d
Pd e

where Pa + Pb = 1 and Pc + Pd = i. The equivalent network is

s maX(ta,tc) s max(t s max(tb,tc) s max(t b
PaPc e + PaPd e a'td) + pbPc e + pbPd e 'td)

If the probabilities are independendent, i.e., Pinj = PiPj

and j. In this case the density function is given by

f12 (t) _12
m

paPc max (ta, tc)

paPd m_x (ta, td)

pbPc max (tb, tc)

pbPd max (tb, td)

for all i
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Supposein the above example that Pc and Pd are not independent

of Pa and Pb" For example, the condition could be imposed that if

branch a is realized, then branch c must also be realized, and simi-

larly for branches b and d. In this case

Panc = Pa = Pc' Pbnc = O, Pand

For this case the equivalent network is

= O, and Pbnd = Pb = Pd "

s maX(ta, s max(tb,td)
Q Pae tc) + Pbe Q

In general, for two branches in parallel betweenANDnodes which have

w-functions of the form

pi esti and _pje stj ,
l j

then the w-function of the equivalent network is s max(ti,_E PiNj e tj)
i J

The problem posed at the beginning of this section can now be solved.

The network presented was:

Transforming to M.G.F. yields

.3 + .7e10s
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which, according to the above results in the equivalent network,

Q .3e8 s _.7e 10s Q "

For this equivalent network, we have

and

d [.3e 8s_IE = _s
+ "7elOS]] = 2.4 + 7 = 9.4
i .0 Js=O

3e8s + .7e lOs"

1.0 s=O
= 19.2 + 70 = 89.2

©

A procedure has now been developed for combining parallel branches.

The next step is to provide a procedure for reducing combinations of

parallel and series branches. The procedure proposed is to alter the

network by adding branches that make parts of the network dependent on

other paths, but causes all paths to be exclusively of the parallel

type or the series type. In this manner, paths will result that can

be reduced by the procedures discussed above. The adding of branches

will be done in such a manner that there will be no effect on the

measures of performance associated with the network. This procedure

will be explained by example.

Assume that there is a nominal schedule of activities for a

project, as shown below in network form:

(i_I) (IjL5) Q (lj2)
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From the network it is seen that all activities (branches) must be

performed and that each activity requires a constant amount of time.

Suppose that two branches are superimposed on this network between

nodes 2 and 6 and between 5 and 7. These new branches represent

activities that do not have to be performed all the time and, indeed,

are only performed say 2 and 30 per cent of the time, respectively.

Examples of such activities would be the need of a repair action, a

spare part, a demand for a specific service, and the like. According

to a previous discussion, two branches must be added for each new

activity because, if the new activity is not performed, it must be

shown in the network in order to make it complete. This is illus-

trated below:

(1;6) _(i;0)

Q (i_i) (i_2) _ .

The addition of the branches between nodes 2 and 3 does not

cause any difficulty, since they are in parallel with the series com-

bination between nodes 2 and 6. Thus parallel paths exist and reduc-

tion would proceed as previously discussed. This is not the situation

for the branches added between nodes 5 and 9. To circumvent this

interdependence an extra node is added to the network, say 5', and

node 2 will be connected to node 5' by a branch with the same
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characteristics as the branch betweennodes 2 and 5. The addition of

this branch does not affect the network (nor in this case the distri-

bution of the times to reach any node), since the branch addedwill take

six time units with certainty. For such a case, the activities are inde-

pendent and the probability of both activities occurring equals the product

The reduction procedure can now proceed in the steps shownof probabilities.

below:

6s .3e13Se + .7

4s
e

7s 5s 2s
e e e

.02e lls + .98

.3e 19s + .7e 6s

e s .02e lls . e0
e •006e19s + .014e 16s + 0.294e 19s + .686e 15s e

The moments can now be obtained as discussed in the section on

EXCLUSIVE-OR logic elements. For this example the M.G.F. is

ME(s ) = 0.30e 22s + 0.014e 19s + 0.686e 18s

In the above example the dependence between the branches between

nodes 2 and 5 and nodes 2 and 5' did not complicate the analysis,

since the probability of taking both branches was one. An example in
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which this is not the case is given below.

.3e4s +

7s
e

4s
e

15s

9s
e

Adding node 2' yields

•3e 4s +

4s
+ .7

7s
e

15s
e

4s 9s
e

The network now consists of paths which can be reduced by using the

parallel and series reduction rules to obtain

.3e 19s + .7e 15s

From this network it is seen that the upper branch takes 19 time units

30 per cent of the time and 15 time units 70 per cent of the time.

Since the only probabilistic branch was the one which was added, it

is observed that the lower branch will take 17 time units 30 per cent

of the time, but this will occur only when the upper branc_ takes 19

time units. Thus, according to the previous discussion, the equivalent

network is

Q .3e19S + .7e 16s Q
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To see that this is the correct result, the network is reanalyzed in

the following manner:

.3e 4s + ._ _e 15s

4Se9 s

.3e 19s + .7e 15s

.3e 19s + .7e 16s

This example demonstrates that if the added branch occurs with certainty,

the problem of dependence can be overcome. A situation where this can-

not be accomplished is presented in Example 15.

Example 15. A Simple PERT-Type Network with Probabilistic Branches

To illustrate the complexity of the AND nodes, a "simple" PERT-

type network will be evaluated. The network consists of four nodes

(milestones) and five branches (activities) as shown below:

Associated with each activity are three time values with the proba-

bility that these time values are realized. Including each of these

possible branches on the network yields
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Wll w21

w12 i I w22

Wll w41

w12 w42

w31

w32 I i w52

where activity 1 is showntwice to makeparallel paths on the graph.

The M.G.F. of the time to go from node i to node 4 is

9 81
= s max(tU;tL) ,_(s) _ _ puc_e

U=I L=I

where

PU= Pli P2j i, j = I, 2, 3 and U = i + 3 (j - I)

tU = tli + t2j ,

PL = Pli P4j P3k P5m
i, j, k, m = i, 2, 3 and L = i + 3 (j - I)

3(k - I) + 3 (m- i)

tL = max (tI i

t PlaPla_Ib = 0

+ t4j; t3k) + t5m ,

if a = b

otherwise, and all other probabilities are

independent.
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For this simple problem there are 729 possible realizations of

the network, and hence the probability law associated with the time

to realize node 4 will have 729 possible values. (The above process

is equivalent to complete enumeration but presents a consistent

mechanical method.) Only with digital computation procedures will

more complex networks of this type be computationally tractable.

This exampledemonstrates that GERTeliminates the need for

making assumptions about the distribution of the time associated with

a branch and the inherent error involved. Also, a procedure for

obtaining the exact M.G.F. is provided. If for large networks the

computations are excessive, approximation techniques can be employed

to remove branches which are not critical. If only the expected

value is of interest, the approximation techniques given in Refs. 3

and 4 can be used.

The above descriptions have been presented to describe the prob-

lem and to illustrate clearly the difficulties to be anticipated. The

general problem for constant times will be presented below and the

solution for one special case given.

General Analysis of Networks with AND Nodes and Constant Times

The networks discussed in the above paragraphs did not include

feedback branches. The introduction of w-functions that contain

feedback elements further complicates the analysis of AND nodes.

st 2
Consider the following network P2 e

p4 est4

- p2 ) estl

. p.)eSt3
4
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which is equivalent to
(I - P2) e stl

. st 2

I - P4)e st3

st 4
I - p4 e

Since for the M.G.F. we consider s to be a real-valued variable, we

st
1 - pe

can expand in a power series and obtain

co

n

i = _ (peSt)
st

1 - pe n=O

Inserting this relationship on the above network and combining terms

yields

(i - p2) P2 n eS(tl+nt2)

n=0

co

(i - p4) P4 k eS(t3+kt4)
k=O

This network demonstrates that for the analysis of AND nodes it is

necessary to combine infinite series according to the conditions of

the AND logic operation. For the above network the equivalent time

to realize node B will be tUB if TUB _> t_LB and _LB if _j_ < _LB"

Thus

+ Prob (_LB = t) Prob (_B < _LB ) "
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For the network with feedback paths, but only constant times, the

possible values of t are discrete and limited to tI + nt 2 and

t3 + kt 4 for all integer n and k. Consider the case t = tI + nt 2.

It can be shown that

Prob (_UB = tl + nt2) = (i - p2)P2 n.

Now for tUB > tLB , it is necessary for tI + nt 2 > t3 + kt4, or for

tI + nt 2 - t 3
k _ • But k must be an integer (a loop must be

t4

traversed an integer number of times) hence k _ tl + nt2 " t3]

' [ t4 J

where [x] = 2 if 2 _ x < 3. With this information it is

seen that

n
Prob (TAB = tI + nt2) = (I - p2) P2

It + nt 2 ]

i - t3

t4

(I - p4)P4 kZ
k = 0

I itI= (i - p2)P2 n - P4

= (I - P2)P2 n " P4 t4

+nt2t_ 4 t3 + t4])

for n = 0, i, 2, ....
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Letting t = t 3 + kt4, we have

t + kt 4 - tl]]7a

Prob (_AB = t3 + kt4) = (I - p4)P4 k _ (I - p2)P2 n

n=0

) k t 2
= (I - P4 P4 " P2

0, I, 2, ..., and where [[ _ is a rounding operation suchfor k

that _ x _ = 2 for 2 < x _ 3. Combining these terms and trans-

forming into the w notations results in the following network:

CO

_ (i - p2)P2 n

n=O

i tl + nt 2 - t 3 + t4]_
s(t I + nt 2) _ t4

e - P4
+

CO

_ (I- p4 ) p4 k
k.=o

e = P2

Thus for a simple network with only two paths in parallel with each

path having only one feedback loop, the resulting w-function is not

in a simple form.

To illustrate the form of the density functions, three numerical

examples are given in Table 12.
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Table 12

DENSITYFUNCTIONSASSOCIATEDWITHTHENETWORK

st2
P2e

1 P2)estl

st 4
P4e

- p4) est4

P2

P4

t I

t 2

t 3

t 4

tAB

3

5

7

9
II

13

15

17

19
21

.8

.7

I

2

3

4

PAB

•1080

.0384

•1547

.0418

•1419

.0344

.1132

.0255

.0847

.0179

.7605

.3

.2

3

7

2

8

tAB

3

I0

17

18

24

26

31

34

38

42

PAB

.5600

.3136

•0605

.0311

.0187

.0063

.0057

.0013

.0017

•0003

•9992

tAB

2

5

8

9

13

14

17

20

21

.3

.5

i

4

2

6

PAB

•6300

.0630

.2079

.0082

•0008

.0630

•0001

.0189

.0000

.9919
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Two observations concerning this illustration are worth noting:

st
(i) the resulting terms of the w-function are in the form pe ; and

st
(2) the number of terms of the form pe to account for most of the

density function is small if the probabilities of taking the feedback

paths are small.

A network with two branches in parallel leading into an AND node,

where the branches have w-functions of arbitrary complexity, can be ana

lyzed in a manner similar to the above. From Mason's form of the topolo-

gical equation, the denominator of an equivalent w-function is in the form

I - E] + _ w - I] + "'',
Wl I Wl 2 13 Wl 4 Wl 5 Wl 6

where the I. are index sets such that lj C I I for j > i. To obtain all]

the terms of the equivalent w E function, the reciprocal of this function

must be expanded.

Summary of AND Node Analysis

No general method of analysis for AND modes has been developed.

Approaches to the problem have been discussed in this appendix and the

limitations of the approaches presented. Possible approximation

techniques were referred to and simplifying assumptions were considered.

Basically the methods proposed are:

i. Solve the complex convolution of two Laplace transforms;

2. Invert to the domain in which only multiplication need

be performed;

3. Reduce the network to all AND nodes, using the w- or

L-function, then transforming to the time domain and

employing a suitable analysis in the time domain, such

as is currently done in PERT or by using the algorithm

suggested by J. J. Martin;
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4. Approximate the w- or L-function by a polynomial in s

and derive a method for combining the resulting poly-

nomials according to the AND logical operation; and

5. Use a brute force approach to the solution of networks

that only have constant time parameters.

For the present it appears that the specific problem will determine

the appropriate procedure to follow. Analysis of AND nodes represents

a fertile area for future research.

THE INCLUSIVE-OR LOGIC ELEMENT

Only a brief discussion of the INCLUSIVE-QR node will be presented

here, since it has many characteristics that are similar to the AND

node. An INCLUSIVE-OR node is one in which the realization of any of

the branches incident to the node causes the node to be realized. The

INCLUSlVE-OR node differs from the EXCLUSIVE-OR node in that more than

one of the incident branches can be realized.

As discussed in Sec. I for the simple network

(i - pa;-)_

(Pb; tb)

(i - pb;-)
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there are three possible ways that node 2 can be realized: (i) a is

realized but not b; (2) b is realized but not a; and (3) both a and b

are realized. The simple network can be redrawn as

(i _pa;- )

7
/_____ - Panb ;L )

(1;o)

\

\(I - pb;- )

where the node symbol _ indicates a MINIMUM node. The MINIMUM node

will be realized only if all branches incident to the node are realized.

The time at which the MINIMUM node is realized is the minimum of the

times at which the branches leading to the node are realized. Thus

for the above example, the probability of realizing node 3 is

PaNb' and t_i3 = min (L' _b )" The distribution function of the time

to traverse from node i to node 3, given that node 3 is realized, is

ProD (_13 _ t) = ProD (_a _ t; _b _ t)

= ProD (L _ t) ProD (_b _ t)

if ta and tb are independent. Thus

Fl3(t) = (i - Fa(t)) (I - Fb(t)).
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This is seen to be analogous to the AND node. This analogy leads to

the definition of another logical operation, the INVERTOR, whose input

side is symbolized by I. The INVERTOR node can have only one input

branch. The role of the INVERTOR is to obtain the additive inverse

for the time parameter. The application of the INVERTOR node to the

above network requires the following observation.

_13 = min (L' _b ) = -max (-L' -_b )"

Thus, the network from node I to node 3 could be drawn as

/
/

_ (Pa,ta)

_ (Pb_tb)

\
\

The use of the INVERTOR node for this example is awkward. The analysis

of the INVERTOR node is not amenable to the transform methods previously

discussed, since it introduces the concept of negative time. It is

presented here solely as a theoretical concept.

In summary, other logical operations will enhance the application

of networks to analysis problems; however, the analysis procedure

currently must be performed on a specific network basis.
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Appendix C

STOCHASTIC NETWORKS WITH MULTIPLICATIVE PARAMETERS

In the development of GERT attention has been restricted to

additive parameters. This emphasis on additive parameters, such as

time, is justified on the basis of the potential applications. In

this appendix attention will be directed to multiplicative parameters,

where, for two branches in series, the parameter of the equivalent

branch is the product of the parameters of the individual branches.

The symbol x will be used to denote the second parameter when the

muitiplicative property is being discussed.

Two logic nodes will be discussed here: (i) the EXCLUSIVE-OR

node; and (2) the logic node employed in flowgraph theory. In both

cases methods for including random variables will be developed.

THE EXCLUSIVE-OR NODE

The equivalent networks for series, parallel, and self-loop

networks, when the x parameter is a constant, are given in Fig. ii.

The expressions shown in Fig. ii are developed in the same manner as

was discussed for the additive parameter. For two branches in series

both the p and x values are multiplied. For the parallel network,

either branch can be taken (but not both), and the same result as for

the additive parameter branches is derived. In the self-loop network,

the expected value of x is obtained by enumeration.

Based on the previous developments, it would be possible to

determine equivalent networks for complex networks if p and x can be

combined into a single quantity. The appropriate transform for a
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(28)(29)
multiplicative parameter is the Mellin transform,

defined by

co

G(S) =_ xS'If(x) dx
O

which is

The following simplified analysis shows that the Mellin transform

is appropriate for products of random variables: let u = xy, then

An u = _n x+ 2n y

Consider the M.G.F. of %n x, M£n x(S),

S
_n x

M£ n x(S) = E[e s _n x} = E[e } =m[x s]

Now from the fact that the M.G.F. of the sum of two random variables

is the product of the M.G.F. of each random variable, we have

or

MAn u(S) = M%n x(S) M_n y(S)

E[u s} = E[xS}E[y s}

by the above. It is easily shown that E[x s} is related to E[xS-l},

which is the Mellin transform, G(s). Combining p with G(s) for the

same reasons as in the additive case, we have V(s) = p G(s). The

quantity V(s) completely characterizes stochastic networks with

EXCLUSIVE-OR nodes and two multiplicative parameters.

Before demonstrating the use of the transformation, several

characteristics of G(s) and V(s) should be noted. In G(s), values of

x are restricted to be positive. For some functions this restriction
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can be obviated. (23) If f(x) is a probability density function, then

G(s) = E[x s-l} so that

E[x} = G(S)[s=2

and

E[x n] = G(s)[

s=n+i

s-i I_ f(x°)dxFor x = x° then G(s) = Xo since = i.

Now V(s) characterizes both the probability that a node will be

realized and the Mellin transform of the x parameter associated with

the realization of the node. In particular VE(I ) is the probability

VE(S) VE(S)

of realizing the node of interest, PE" Thus, GE(S ) = _ PE

and GE(n+I) is the nth moment of x, given f(x) is a probability

distribution function.

The above results can now be applied to specific stochastic net-

works. In Fig. 12, the use of the V-transform is illustrated for

constant x, and the topological equation is used to obtain VE(S ).

From GE(S) in Fig. 12 it is seen that the results regarding expected

values given in Fig. ii are obtained when s = 2. Higher moments are

easily obtained.

Consider now that x is distributed according to a negative

-@x
exponential distribution with a mean l/e, i.e., f(x) = 0e . For

this case it can be shown that

Note that

G(s) = I_ xS-lee-e(X)dx = e(l-s)F(s)

E[x] = G(2) = 8-I

and

E[x 2} = G(3) = 2 _-2 as expected.
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On the following network it will be assumed that all branches have

parameters that are random variables described by the negative

exponential distribution.

V

a

Vf

VE =

VaVbV d + VaVcV d

i - VbV f - VcV f

VaVd(V b + Vc)

i - Vf(Vb+ Vc)

It can be seen from the network that VE(I ) -- i, and hence

- l-s el-SF(s)]paPa[ela Sr(s)][edl"Sr(s)][PbOb F(s) + p

GE(S ) = c c

i - pf0fl-S£(s) [Pb0bl-SF(s) + Pcecl-SF(s)]

GE(S) =

l-s^l-s, l-s l-s
PaPd[F(s)]3[8 a ud ][Pb0b +PcSc ]

l-s l-s
i - pfs_-S[F(s)]2[pb8 b + PoSe ]

where Pa = i,

Pb = 1-Pc

pf = l-Pd.

From the above equation for GE(S), all the moments associated with

x from node i to node 4 can be calculated.

FLOWGRAPHS WITH RANDOM VARIABLES

In Sec. III the computational equivalence between flowgraphs

and GERT was discussed. There is, however, a conceptual difference

in the logical node used in flowgraphs and in stochastic networks.

This difference will be explained in terms of two parallel branches.
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For two branches in parallel in a flowgraph, we have

Yl

<121> Yl + Y2

In a flowgraph both branches are employed (realized) and the values

are added. There is no question as to realization of the second node.

There is no similar concept in stochastic networks, although computa-

tionally the probabilities in EXCLUSIVE-OR nodes are computed

identically. Because of this difference, the results obtained for

multip!icative parameters are not applicable for flowgraphs with

random variables associated with the branches.

For flowgraphs with random variables the following scheme is

proposed. First, develop the equivalent network in symbolic form

using the topological equation. This will yield the equivalent

transmittance as a function of the random variables. (Care must be

taken when reducing the resulting expression, since the value zero may

be included within the range of the random variable.) Second, use

the Mellin transform and the M.G.F. to obtain the transform for products

and sums of the random variables respectively. This is equivalent to

partitioning or segmenting the equivalent network equation into

independent parts. Third, if the next operation involves a product

(quotient), convert the M.G.F. into Mellin transform form or, if the

next operation is a sum, convert the Mellin transform into a Fourier

transform. Continue in this manner until all random variables have

Mellin transforms are virtually two-sided Laplace transforms and

may be expressed either as exponential Fourier transforms in the complex

domain, or as combinations of Laplace transforms. (See Ref. 28, p. 305).
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been combined. The resulting equation will permit the momentsof the

equivalent parameter for the entire network to be computed.
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